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ABSTRACT 

THE MIXING OF A RIVER INTO COASTAL WATERS AT TWO BEACHES: 

ENVIRONMENTAL FACTORS, E. COLI CONTRIBUTIONS AND APPLICATIONS 
FOR PREDICTIVE MODELS 

by 

Adrian Koski 

The University of Wisconsin-Milwaukee, 2015 

Under the Supervision of Professor Sandra McLellan 
 

Beach closures and public health protection are confounded by analytical procedures 

that result in delays in notification of adverse water quality conditions and the lack of 

affordable analytical methods to identify pollutant sources.   Attempts have been made to 

develop predictive frameworks using ancillary hydrometeorological data to statistically 

anticipate deteriorated water quality.  Many urban coastal beaches are impacted by river 

runoff.  In Kenosha Wisconsin, beach sanitary survey data from two beaches adjacent to the 

mouth of the Pike River were examined to ascertain whether simple river-lake mixing models 

identified river influence on coastal water quality and improved predictions of beach advisories. 

Water samples (798 water samples) were collected from the Pike River (one location) 

and Lake Michigan beach locations to the north (three locations) and south (four locations) of 

the inflow during the summer months of 2012-2014.  Specific conductivity was used as a 

conservative tracer for quantifying river-lake mixing.  Mixing was dependent upon distance 

from the river mouth, river discharge, and wind and alongshore current directions (p<0.05).   A 

two component mixing model quantified coastal E. coli concentrations when river waters were 

the dominant pollution source (n=9, R2= 0.5773-0.9282), except near the mouth where 
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groundwater exfiltration confounded mixing calculations (n=8, R2=0.1704).   An ensemble 

model (predictive model which estimated river influence on coastal waters) more accurately 

predicted exceedances of water quality standards compared to traditional multiple linear 

regression models as measured by sensitivity (fraction of exceedances accurately predicted; 

0.419 vs. 0.194), but with more false positives.  Given the importance of external river borne 

sources of E. coli to coastal beaches, models and data which address riverine mixing under a 

variety of hydrometeorological conditions have the potential to improve predictions of water 

quality in nearby waters and therefore protect public health.    
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1.  Introduction/Background 

 Travel and tourism represents the United State’s largest industry and beaches represent 

the top tourism destination (Houston, 2008).  Unfortunately, water quality at many beaches is 

impaired.  Excess risk of pathogen exposure is the number one reason for a water body to be 

placed on the 303(d) list of impaired waters in the United States (US EPA, 2011).  Pathogens at 

bathing beaches can result in illnesses including gastroenteritis, respiratory infections, and skin 

infections amongst others (Craun et al, 2005; Seyfried et al, 1985).  Public awareness has 

increased about water quality issues; however, there is little improvement. The percentage of 

beaches open the entire swimming season within the Great Lakes basin has remained nearly 

constant, with 73% in the United States and 49% of beaches in Canada in 100 percent 

compliance with regulatory standards from 1998 to 2007 (Environment Canada and US EPA, 

2009). Nine percent of beaches in the US and 42% of beaches in Canada were designated as 

having impaired water quality for more than 10% of the available swim days from 2006 to 2007 

(Environment Canada and US EPA, 2009).  Differences in water quality impairment rates 

between the United States and Canada may be due to disparities in standards and may not 

reflect an actual difference in water quality.  Due to the immense economic benefits of beaches 

and the threat poor water quality poses to public health, recreational water quality in the 

United States is regulated through the Environmental Protection Agency (US EPA). 

1.1  BEACH Act 

 The Beach Environmental Assessment and Coastal Health (BEACH) Act was signed into 

federal law in 2000, as an amendment to the Clean Water Act, to inform users of bathing water 

quality (U.S.C. 114 STAT. 870).  The BEACH Act requires states to adopt water quality standards 
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protective of public health for Great Lake and marine coastal waters used for swimming, 

bathing, surfing or other contact activities.   

 Water quality for bathing purposes is gauged using fecal indicator bacteria (FIB), 

specifically Escherichia coli (E. coli) and enterococci.  E. coli is used exclusively in freshwater 

systems and enterococci may be used in either freshwater or marine systems.  Revised 

recreational water quality criteria released by the United States Environmental Protection 

Agency in 2012 set beach action values (BAVs), concentrations of FIB at which the public is 

required to be notified of unsafe conditions (US EPA, 2012).  BAVs were based upon 

gastrointestinal (GI) illness rates found in the National Epidemiological and Environmental 

Assessment of Recreational Water studies (US EPA, 2012).  BAVs of 235 colony forming units 

per 100 milliliters of water (CFU/100 ml) E. coli and 70 CFU/100 ml enterococci for single 

samples are associated with 36 GI illnesses per 1,000 primary contact exposures. 

1.2  Fecal Indicator Bacteria (E. coli and Enterococci) 

 Fecal indicator bacteria are present in the intestinal flora of warm blooded animals 

including humans.  The presence of FIB such, as E. coli and enterococci, in water is used to 

signal recent fecal contamination and may denote the presence of pathogens associated with 

feces.  Elevated concentrations of E. coli and enterococci in bathing waters have been shown to 

be associated with an increased prevalence of GI illnesses in exposed individuals (US EPA, 1986; 

Dufour, 1984; US EPA, 2012).  The actual risk of illness depends on a variety of factors including 

the strength of an individual’s immune system, the type of exposure, and the host origin of FIB, 

amongst other factors (Seyfried et al, 1985). Pathogen assessments are not directly used to 

determine water quality due to the prohibitive cost of testing, the elusiveness of pathogens in 
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aqueous environments and the lack of an agreed upon representative pathogenic indicator(s) 

(Field, 2008).   

1.3  Drawbacks of using FIB in Bathing Waters 

 The direct detection of FIB does not indicate the host origin or method in which it was 

conveyed to recreational waters; this often results in the origin of FIB being attributed to 

unknown or unsubstantiated sources which in turn prevents the development of successful 

restoration strategies (Kovatch, 2006).  Further, currently approved analytical (microbiological) 

methods require 18 to 24 hours to generate results.  The time delay between sample collection 

and the availability of results does not represent the fluid nature of the aquatic environment 

and, therefore, is unable to effectively safeguard public health.  Beach managers use the data 

obtained during monitoring to issue beach status updates using the persistence model (current 

beach status is based upon previous result).  Most exceedances of bacteria recreational water 

quality standards, approximately 70% in marine waters and up to 96% in freshwater, only last 

one day (Leecaster and Weisberg, 2001; Nevers and Whitman, 2011); thus the persistence 

method fails to capture most exceedances.  The delay between when water samples are 

collected and when results are available results in scenarios where patrons are exposed to 

potentially unsafe swimming conditions yet the beach remains open (Type II errors) and 

scenarios where water quality is acceptable, yet the beach is closed (Type I errors) (Frick et al, 

2008).  Delays in the issuance of untimely water quality updates have negative public health 

and economic consequences to local communities and businesses that rely on beach tourism 

(Rabinovici et al, 2004). 
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1.4  Sources and Sinks of FIB 

 FIB can enter aqueous environments from multiple host sources including humans and 

animals.  Sediments, algal blooms and biofilms can serve as reservoirs of introduced FIB and 

studies indicate reproduction may occur within these media  (Whitman et al, 2003; 

Byappanahalli et al, 2007; Englebert et al, 2008; Byappanahalli et al, 2009; Alm et al, 2003; 

Kinzelman et al, 2004; Beversdorf et al, 2007; Skinner et al, 2010).  Once present, FIB may be 

distributed into coastal waters from its portal of entry through a variety of mechanisms 

including sewage overflows, stormwater infrastructure, direct runoff, tributaries or agitation in 

the case FIB from of sediments, algae and biofilms (Whitman and Nevers, 2003; Ishii et al, 2006; 

Kinzelman et al, 2004; Ge et al, 2010).  The mechanism of delivery may be further classified as 

point sources (any single identifiable source from which pollutants are discharged such as 

pipes) or non-point source (from diffuse locations across the landscape). 

 FIB in water can be free floating or attached to suspended particles; this affects 

deactivation/disappearance rates.  The decay rate of E. coli has been estimated to be two to 

four times slower attached to sestons compared to free floating (Garcia-Armisenet al, 2006; Wu 

et al, 2009); others have assumed no deactivation/decay when attached to sediments 

(Jamieson et al, 2005).  This can create variability in FIB concentrations as 

meteorologic/hydrologic conditions which favor sedimentation/suspension can cause changes 

in bacterial survival rates and can serve as a mechanism which introduces/removes bacteria 

from the water column. 

 Several other mechanisms may remove bacteria from the water column, e.g. 

deactivation/decay and sedimentation (Schueler and Holland, 2000; Schillinger and Gannon, 
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1985).  Methods of bacteria deactivation/decay vary based upon environmental conditions and 

include bacteriophage attacks, toxins produced by macrophytes, ultraviolet (UV) light exposure 

and natural cell death (Fujioka et al, 1981).  It has been noted that sunlight, temperature, 

salinity and protozoa grazing can also influence the survival of FIB (Brauwere et al, 2014).   

1.5  Dilution and Mixing  

 Although dilution does not serve as a removal mechanism for FIB, it can reduce 

concentrations.  Therefore, the measurement of mixing may be an important determinant of 

final FIB concentration in an aquatic environment.  The mixing/dilution of one water body into 

another have been measured via end member mixing models (EMMM) and the use of injected 

and natural tracers (Schemel et al, 2006; USGS 2007).  End Member mixing models (two 

component) use mass balance equations for tracers and water to determine the fraction of 

water from each source.  Schemel et al (2006) noted tracers for measuring mixing should be 

conservative in nature (non-reactive), such as salts or dissolved metals.  Additionally, the 

concentration of tracers should be large enough to enable precise calculations.  

1.6  Beach Sanitary Surveys and Microbiological Source Tracking 

 To help deduce the host origin and conveyance methods of FIB, the United States EPA 

piloted the use of beach sanitary surveys (BSSs) for marine and Great Lake beaches (US EPA, 

2014).  The BSS protocol is a standardized method for collecting information regarding beaches 

and associated watersheds.  Examples of information collected include the number, type and 

location of wildlife, the accumulation of algae, the slope of the beach, the location and 

condition of bathrooms and daily meteorologic, hydrologic and physiochemical conditions.  

Relevant information about the watershed includes land use, the location(s) of stormwater 
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outfalls and septic tank use.  The analysis and interpretation of this information may illuminate 

sources and conveyance mechanisms of FIB and meteorological/hydrologic conditions 

associated with exceedances of recreational water quality standards.  The use of BSSs has been 

proven valuable and has been used to successfully guide mitigation strategies at Great Lake 

coastal beaches (Kinzelman and McLellan, 2009).   

 Numerous microbial source tracking (MST) methods have also been developed to 

further identify host origins of FIB (Field, 2008).  Some techniques require extensive gene 

libraries and others isolate the origin of bacteria through the use of genetic primers (Field, 

2008).  Methods that rely on gene libraries or source identification through the use of species-

specific bacteria focus on identifying the bacterial origin, not necessarily the mechanism by 

which FIB entered coastal waters.  If multiple sources and/or delivery mechanisms exist, MST 

techniques may not provide discriminatory results.  Therefore, additional information on the 

mechanism(s) which introduced FIB into waters is necessary to appropriately identify sources.  

MST methods are also time and labor intensive, therefore, they are not useful to the beach 

going public for daily decision making.   

1.7  Near Real Time FIB Quantification 

 In order to address the time delay inherent to current analytical testing, multiple near 

real-time methods have been evaluated, including predictive models and rapid molecular 

analytical assays (i.e. quantitative real-time polymerase chain reaction or qPCR) (Dick and Field, 

2004; Shannon et al, 2007; Nevers and Whitman, 2005).  Models, for coastal water quality 

purposes, are mathematically based tools designed to determine FIB concentrations based 

upon readily measured variables.  Results from these real-time methods/models can be used to 
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make management decisions or to inform laboratory-based testing.  The use of models is more 

protective of public health while decreasing negative economic consequences by providing near 

real time results (Nevers and Whitman, 2005; Frick et al, 2008, Nevers et al, 2007).  Models 

have been used in a variety of settings including rivers, beaches, lakes and catchments 

(Brauwere et al, 2014) and have been shown to be more accurate at informing the public of 

unsafe conditions than the persistence method (USGS, 2013).  Models can be mechanistic, 

regression or based upon a hybrid of the two (an ensemble) in approach.   

1.8  Mechanistic Models  

 Mechanistic models mathematically simulate FIB concentrations through mass balance 

equations based upon an understanding of external sources, conveyance and the 

disappearance/deactivation of FIB (Brauwere et al, 2014).  These models are designed to 

characterize major processes within the watershed/coastal area.  Equations describing these 

processes are based upon physical, chemical and/or biological parameters which can be readily 

measured or estimated such as FIB mortality, settling rates, solar insolation, bathymetry, 

salinity and others.  Models may simulate multiple interactions depending upon complexity and 

may include sedimentation, re-suspension, dilution and variable disappearance rates for FIB 

caused by geospatial differences in salinity and solar insolation across study areas (including 

variably caused by suspended solids) (Brauwere et al, 2014).   In addition to real-time water 

quality predictions, these models can be used to evaluate specific scenarios such as the direct 

effect of management actions and changes in source loading to aquatic environments (Coffey 

et al, 2010).  Although useful for multiple purposes, this type of model tends to be 
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computationally complex and requires expertise which is not readily available to most beach 

managers.   

1.9  Regression Based Models 

 Regression based models are created through direct empirical relationships between FIB 

concentrations and measurable parameters (Brauwere et al, 2014).  Examples of parameters 

include meteorological, hydrological, physiochemical descriptors, land use and recently 

collected microbiological data (Nevers and Whitman, 2005; Nevers and Whitman, 2011; 

Brauwere et al, 2014).  This type of modeling approach may use several methods to optimize 

performance including multiple linear regressions (MLRs), regression trees, partial least squares 

regressions, logistic regressions, and artificial neural networks (Brauwere et al, 2014).  The 

general format of a MLR model is represented in equation 1, as described in Hellweger (2007).  

Where Ce represents the predicted FIB concentration, β0 is a constant, β1 through βn are 

regression coefficients, X1 through Xn are independent variables and e is a residual error.  

Independent variables can be transformed using mathematical functions (e.g. log10) to improve 

model performance.   The EPA has developed a tool, Virtual Beach (VB), to assist in the creation 

of regression models (US EPA, 2013). 

𝐸𝑞 1.     𝐶𝐸 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝑒 

 Several drawbacks exist to using regression based models.  Relevant explanatory 

variables may be extremely site specific; thus a model which is sufficient at one location may 

not be valid at others.  This type of model is also unable to directly simulate processes which 

result in high concentrations of FIB.  Thus, specific scenarios that may alter FIB concentrations 

such as changes in management actions or restoration activities cannot be evaluated.  Further, 
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the mechanism which accounts for predicted bacteria concentrations is unclear.  Additionally 

models that examine point sources (e.g. rivers, stormwater outflow) and coastal FIB 

concentrations have not linked together (Nevers and Whitman, 2005).  At coastal areas that are 

a mixture of water from multiple sources (e.g. mixture of coastal water and point source), each 

water body may have different variables or relationships between variables that are 

explanatory for bacteria concentrations. Thus, trying to capture the bacteria concentration of a 

mixed water body in a single regression model may create error and result in a poor fit. 

1.10  Ensemble Models 

 In order to optimize model fit, one study used a hybrid between a mechanistic and 

regression model known as an ensemble model (Hellweger, 2007).  The basis for ensemble 

models are described in Thompson (1977):”two or more inaccurate, but independent 

predictions of the same future events may be combined in a very specific way to yield 

predictions that are, on the average, more accurate than either or any of them taken 

individually.”  For this model, the outputs of a regression and mechanistic based model were 

combined using equation 2, where CME, CM1 and CM2 are the FIB concentrations from the 

ensemble (models 1 and 2, respectively), and aM1 and aM2 are weighing coefficients (values of 

0.5 respectively) (Hellweger, 2007).  This model noted a lower root mean square error (RMSE) 

(190 CFU/100 ml) than either the mechanistic (370 CFU/100 ml) or regression (200 CFU/100 ml) 

based model in a river environment.  Although this model had superior performance, as 

measured by RMSE, it also suffered from the same drawbacks of regression based models, e.g. 

there a lack of knowledge pertaining to the mechanistic basis for elevated levels of FIB. 

Eq 2.    𝐶𝑀𝐸 = 𝑎𝑀1𝐶𝑀1 + 𝑎𝑀2𝐶𝑀2 
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2.  Purpose of Study 

 An understanding of how point sources mix into coastal waters is required to determine 

sources of impairments at bathing beaches.  This study seeks to identify conditions favorable to 

the mixing of the Pike River into Lake Michigan coastal waters, identify the associated impact of 

the river on coastal E. coli concentrations, and use this information to more accurately gauge 

water quality in real-time through predictive models.  Specifically: 

  (1) This study evaluates the frequency and degree of mixing between the Pike River 

(serving as a point source) and coastal waters at two Great Lakes beaches (Alford and Pennoyer 

Park) in relation to alongshore current direction, flow volume, distance from the river, and wind 

direction (BSS variables).  This information can be used when evaluating the health of 

recreational waters at coastal locations by ruling in/out point sources.  Understanding the 

mixing of point sources with coastal waters under a variety of scenarios will provide 

information to make MST techniques more discriminative and aid in the identification of water 

quality impairments. 

 (2) This study also evaluates using an end member mixing model (two component 

mixing model) to determine E. coli contributions from a point source (Pike River) to Lake 

Michigan coastal waters.  Equation 3 represents the proposed model.  In equation 3, Cec 

represents the estimated FIB concentrations of coastal waters, W represents the mixing ratio, 

Cr represents the actual FIB concentration of the river, and Cc represents the estimated 

background concentration of FIB in unmixed areas.  Reasonable fits between observed and 
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estimated FIB concentrations would aid in the evaluation of sources of contamination by 

providing estimates of the fecal bacteria contribution from the point sources to coastal waters. 

𝐸𝑞 3.     𝐶𝑒𝑐 = 𝑊 ∗ 𝐶𝑅 + (1 − 𝑊)𝐶𝐶  

 (3) This study proposes a method to improve the performance of predictive models by 

linking point sources and coastal waters.   Predictive models can be created for the Pike River 

and coastal areas, under the assumption of no river mixing.  Actual coastal concentrations 

during mixing events can be calculated by combining these two models using the mixing ratio 

as a mechanistic link, i.e. an ensemble model.  Coastal models predict the impact of non-point 

sources of E. coli, while the product of estimated Pike River E. coli concentration and the mixing 

ratio estimate the contributions from the river (equation 4). In equation 4, Cp represents the 

predicted E. coli concentration of a mixed water body (river and coastal water), W represents 

the mixing coefficient and CpR and Cpc represent MLR models which describe E. coli 

concentrations in the river and coastal areas (without mixing), respectively. By modeling the 

water bodies separately (source and coastal), the best explanatory variables corresponding to 

bacteria concentrations in each water body can be identified. If improved model performance is 

achieved compared to a traditional Virtual Beach MLR model, this modeling technique has the 

potential to better protect public health while limiting negative economic consequences 

associated with Type I errors.  

𝐸𝑞 4.     𝐶𝑃 = 𝑊 ∗ 𝐶𝑝𝑅 + (1 − 𝑊)𝐶𝑝𝐶 
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3.  Methods 

3.1  Study Site 

 The study area was located on the southwest shore of Lake Michigan in Kenosha, 

Wisconsin at the mouth of the Pike River (Figure 1).  The location of the Pike River mouth, 

adjacent to two moderate priority Lake Michigan coastal beaches (Alford Park to the north and 

Pennoyer Park to the south), represents an ideal study area.   

 

Figure 1.  Study Location-Pike River, Alford Park and Pennoyer Park in Kenosha, Wisconsin. 

 The Pike River drains 132 square kilometers of eastern Kenosha and Racine Counties. 

Land use characteristics, the infill of wetlands and high amounts of impervious surfaces have 

led to flashy flow conditions where discharge volumes change rapidly due to rainfall and 

snowmelt.  Effluent from this river has been demonstrated to possess consistently elevated E. 

↑ North 
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coli concentrations under high flow conditions and has been identified as a source of FIB to 

adjacent nearshore waters (Alford and Pennoyer Park) (Koski and Kinzelman, 2013). 

 Alford Park is approximately 1,100 meters long and is bound on the south end by the 

Pike River.  The beach face is orientated along the north/south axis.  The width of the beach 

varies from 16 meters on the north end to 65 meters on the south end.  Water depths increase 

to 1.2 meters within a distance of 15 meters from the shoreline.  Beyond the Pike River, there is 

one other point source, a stormwater outfall (drainage are =2,900 m2) which discharges at the 

center of the beach.  However, no dry weather discharge was noted from this outfall and flow 

lines in the sediments indicate the water infiltrates prior to reaching Lake Michigan following 

precipitation.  Thus, non-point sources inherent to most beaches (e.g. direct bather 

contributions, wildlife, algal blooms and sediments) and the Pike River appear to have the 

greatest influence on FIB concentrations at this location. 

 Pennoyer Park is approximately 500 meters long and is bound on the north side by the 

Pike River and by shore armor to the south. The beach face is orientated along the north/south 

axis.  The width of the beach varies from 71 meters on the north end to 96 meters on the south 

end.  The depth of water reaches 1.2 meters within 10 meters of the shoreline.  There is one 

stormwater outfall on the south end of the beach (drainage area= 115,000 m2) and flow was 

noted to reach the lake following rainfall events.  However, recent stormwater infrastructure 

improvements direct discharge into an infiltration basin, which lessens coastal water quality 

impacts.  Beyond the aforementioned sources of FIB, non-point sources are likely to influence 

recreational water quality.   
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3.2  Field Methods 

3.2.1  Water Sample Collection 

Water samples were collected from seven locations across Alford and Pennoyer Park Beaches 

as well as from the mouth of the Pike River (PR) on 100 days between May and September, 

2012-2014, to assess spatial and temporal variation (Table 1, Figure 2).  Four sampling locations 

were located south of the Pike River mouth (Pennoyer Park) at distances of approximately 20 

meters (P1), 130 meters (P2), 250 meters (P3) and 400 meters (P4).  Three sampling locations 

were located to the north of the Pike River mouth (Alford Park) at distances of 130 meters (A1), 

400 meters (A2) and 650 meters (A3).  Sampling locations where selected to correspond with 

historical monitoring locations to facilitate comparisons with past data, if necessary.  

Table 1.  GPS coordinates of sample locations. 

GPS coordinates of sample locations 

Sample Location Latitude (oN) Longitude (oE) 

PR 42.608110 87.819313 
A1 42.608019 87.818702 

A2 42.609990 87.818873 

A3 42.612234 87.818740 

P1 42.606479 87.818118 

P2 42.605622 87.817939 

P3 42.604708 87.817725 

P4 42.603533 87.817651 
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Figure 2.  Sampling Locations-Alford Park, Pennoyer Park and Pike River.  Sample locations 
A1-A3 (Alford Park) are located to the north of the Pike River and locations P1- P4 (Pennoyer 
Park) are located to the south. 

A3 

A2 

A1 

P1 

P2 

P3 

P4 

PR 
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 Lake Michigan surface water samples were collected in sterile Whirl-Pak® (Nasco, Fort 

Atkinson, WI) bags from water of between 0.30 and 0.45 meters deep at coastal locations (knee 

high) from 0.15 meters below the water surface.  Pike River surface water samples were 

collected from approximately half the depth of the water column.  Steps in the sample 

collection process include: wading out to the proper depth of water, facing towards the 

direction of the longshore current, removing the perforated plastic strip from on top of the 

Whirl-Pak® bag, pulling the tabs located on the side of the bag to open, submerging the bag to 

the appropriate depth to collect the water sample, sealing the bag, and placing the sample on 

ice packs at 4 oC until samples were returned to the laboratory for analysis.  This process was 

repeated at all sampling locations.   

3.2.2  Beach Sanitary Surveys 

 Beach Sanitary surveys were conducted in concert with sample collection to 

characterize and quantify hydrometeorological variables and field conditions.  Parameters 

collected and described included: wind speed, wind direction, current speed, current direction, 

cloud cover, air temperature, precipitation, river discharge volume, longshore current direction, 

estimated wave height, water temperature and water clarity. 

 Wind Speed and direction was determined using an anemometer operated and 

maintained by the National Weather Service Central Region located 2 km south of the beach 

(http://www.ndbc.noaa.gov/station_page.php?station=knsw3) at an elevation of 19.5 meters 

above lake level.  Data was obtained for the closest ten minute interval in which samples were 

collected.   
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 Current speed and direction were obtained from model results provided by the Great 

Lakes Coastal Forecast System Nowcast 2D model (http://data.glos.us/glcfs/) at Latitude: 

42.59671, Longitude: -87.8069.  Model results were obtained for the closest hour samples were 

collected.  Estimated wave heights (referred to as modeled wave heights) were also collected 

from this system. 

 Cloud cover was visually estimated using the amount of sky covered by non-transparent 

clouds.  This description mirrors the scale the National Oceanic and Atmospheric Administration 

(NOAA) uses.  Cloud cover was classified as sunny (0 to 1/8th cloud coverage), mostly sunny 

(1/8th to 1/4th cloud coverage), partly sunny (1/4 to ½ cloud coverage), mostly cloudy (1/2 to 

7/8th cloud coverage) and cloudy (7/8th to total coverage).   

 Air temperature was determined using a calibrated Kestrel® 4000 Pocket Weather 

Meter (Boothwyn, Pennsylvania) in the shade or in the shadow of the technician’s body if shade 

was not available to prevent temperature readings from being directly influenced by solar 

radiation.   

 Precipitation amounts for the 24 hours prior to sampling were obtained from a weather 

station located at the Kenosha Regional Airport 8.5 km to the southwest of the study site 

(http://www.weather.gov/data/obhistory/KENW.html).   

 River discharge volume at the time of sample collection was approximated using a 

United States Geological Survey (USGS) gauging station (Station 04087257) located 

approximately 14 km upstream from the mouth of the Pike River 

(http://waterdata.usgs.gov/wi/nwis/uv?site_no=04087257).   
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 Longshore current direction was determined by visually examining the direction in which 

waves traveled parallel to the shoreline.  If this method was indeterminate, a floatable object 

was tossed into the water beyond the breaker zone and the direction the object travels parallel 

to the shoreline was recorded. 

 Wave height was determined by visual estimation (Field Estimated Wave Height).  Wave 

height, measured from crest to through, was estimated by taking the average wave height of 

ten waves.   

 Water Temperature was determined at the time of sample collection using a calibrated 

alcohol thermometer placed in the water adjacent to the sample location.  After equilibrating, 

the temperature was recorded to the nearest 0.1 oC.  

 Water clarity was visually estimated in water 0.30-0.45 meters deep.  Water clarity was 

described as clear, slightly turbid, turbid or opaque.  Clear water corresponded with conditions 

when field technicians could clearly see their feet in knee deep water without any disturbance.  

Slightly turbid water was defined as when a technician had difficulty seeing their feet but could 

make out their ankles.  Turbid was defined as when a technician had trouble seeing their 

ankles, but can clearly see their mid calf.  Opaque water was defined as when a technician 

could not clearly see their mid calf.  All approximations were made in the shadow of the 

technician to control for solar isolation altering estimates. 
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3.3  Laboratory Methods 

3.3.1  E. coli 

 E. coli concentrations were determined within six hours of sample collection, using 

Colilert-18® (IDEXX Laboratories, Westbrook, ME) (Standard Methods, 2005).  Colilert-18® uses 

enzyme substrate for the simultaneous detection of total coliforms and E. coli.  In brief, water 

samples were diluted with sterile water to a total volume of 100 ml (e.g. 10 ml of sample + 

90ml of sterile water) in a sterile vessel.  Colilert-18® reagent was added to the vessel 

containing the sample and mechanically agitated to promote the dissolution of the reagent.  

The solution was transferred into a Quanti-Tray® 2000 (IDEXX Laboratories, Westbrook, ME) 

and sealed using a Quanti-Tray sealer (IDEXX Laboratories, Westbrook, ME).  Samples were 

incubated at 35 oC for 18 hours per manufactures instructions (IDEXX, 2013).  Following 

incubation, samples were placed under a 366 nm light and the number of small and large cells 

that fluoresced were counted.  The number of cells that fluoresced was compared to a 

manufacturer’s provided most probable number (MPN) table to determine the E. coli 

concentration of the diluted sample, expressed as MPN/100 ml.  This value was multiplied by 

the corresponding dilution factor used (e.g. 1:10) to determine the E. coli concentration of the 

sample.   

3.3.2  Specific Conductivity 

 Specific conductivity, a unit of conductivity temperature corrected to 25oC, was 

measured using either an Oakton 400 or Oakton 510 (Vernon Hills, IL) conductivity meter. The 

meter was calibrated at least monthly, according to manufacturer’s recommendations, using 

NIST traceable 10, 100, 1413 and 12,880 micro-Siemens (μS) standards (manufactured by/on 
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behalf of: Fisher Scientific, Pittsburg, PA and Forestry Suppliers, Jackson, MS).  The accuracy of 

calibrations were also verified daily by evaluating secondary standards; if secondary standards 

deviated by more than 1% from the actual value, the unit was recalibrated. Prior to analysis, the 

conductivity probe was rinsed with deionized water (0.2 μm final filtration) (~10 μS) to remove 

any contamination from previous samples and dried using lint free Kimwipes™ (Kimberly-Clark, 

Neenah, WI). An aliquot of water was transferred into a sample cup following bacterial analysis. 

The probe was lowered into the solution and allowed to equilibrate until a static value was 

obtained, generally within 10 seconds and the value was recorded. The probe and calibration 

cup was rinsed thoroughly with deionized water, dried and the next sample was processed. 

3.3.3  Turbidity 

 The turbidity of water samples was determined within 24 hours of sample collection 

following bacterial analysis. Turbidity was reported as Nephelometric Turbidity Units (NTU) 

using a HF Scientific Inc. (Fort Myers, FL) Micro 100 Turbidimeter. The turbidimeter was 

calibrated at least once every 30 days according to the manufactures instructions using 0, 10 

and 1000 NTU primary AMCOCLear Standards manufactured by GFS Chemicals Inc (Powel, OH). 

 Once daily, after allowing the turbidimeter to warm up for at least 30 minutes, the 

calibration of the equipment was verified using sealed secondary standards (AMCOClear) of 0, 

10 and 1000 NTU. If values deviated by more than 10%, the equipment was recalibrated using 

primary standards. Following calibration, samples were gently mixed and small aliquots were 

used to rinse a scratch free cuvette three times. After the third rinse, the cuvette was filled with 

sample (approximately 25 ml) and capped. The sides of the cuvette was cleaned with ethyl 

alcohol to remove any debris or oils that may interfere with measurements and thoroughly 
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dried using lint free wipes (Kimwipes™). The cuvette was placed into the turbidimeter and 

allowed to equilibrate (approximately 10 seconds). The cuvette was slowly rotated 360o 

(indexed) and the lowest displayed value was recorded. 

3.4  Data Analysis 

3.4.1  Mixing Ratio 

 Specific conductivity values have been used as surrogates for dissolved tracers (Schemel 

et al, 2006; Matsubayashi et al, 1993).  The mixing ratio, the volumetric fraction of river water 

present in coastal waters, was calculated using specific conductivity as a tracer according to 

equation 5.  In equation 5, W represents the volumetric fraction of water from the Pike River 

present in coastal waters, K1 represents the specific conductivity of the Pike River, K2 represents 

the background specific conductivity value and Mz represents the specific conductivity value in 

mixed areas. The specific conductivity of the river (K1) was treated as the actual value 

determined from grab samples.  The specific conductivity of the mixed zone (Mz) was 

represented as the actual value for each sampling location.  A dynamic value, described below, 

was chosen to represent K2 due to factors causing variability in specific conductivity values close 

to the shoreline. 

 A dynamic specific conductivity value was chosen due to daily variability in specific 

conductivity values.  Open lake specific conductivity values are fairly constant due to the large 

residence time of water within Lake Michigan.  However, the sampling locations were near the 

shoreline (<15 m) where localized groundwater exfiltration can cause variability in measured 

values.  Groundwater specific conductivity levels are elevated relative to surface waters due to 

the dissolution and interaction with minerals.  For example, conductivity levels in groundwater 
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below Hamilton Harbor in Ontario were noted to be two to three times higher than adjacent 

surface water values (Harvey et al, 1997).  Additionally, total dissolved solid measurements, 

which are proportional to conductivity levels, were noted to be higher by a factor of up to five 

within groundwater compared to surface waters 20 km to the south of the beach (Visocky, 

1977).  The water table adjacent to beaches (>2m aquifer depth) rises and fall proportionally 

with lake levels (Crowe and Meek, 2009; Visocky, 1977). As such, seiches, storm surges and 

other short term factors which affect lake levels will result in the exfiltration of groundwater 

into the lake.  Past research at Pennoyer Park indicated the gradient of the groundwater table 

was relatively flat. However, the gradient varied and at times was observed to be at a direction 

where the lake would recharge the local aquifer (Skalbeck et al, 2010).  Changes in the gradient 

of the groundwater table causes the exfiltration of water with elevated specific conductivity 

values into coastal water which necessitates the use of a dynamic background conductivity level 

near the shoreline. 

 The specific conductivity of the unmixed zone (K2) was estimated by calculating the 

median conductivity at Alford and Pennoyer Park for each day samples collection occurred.  The 

lower of the two median values (from Alford or Pennoyer Park) was chosen to represent the 

background conductivity for each date.  This was justified based upon visual observations.  

When plumes were visible, they generally moved in one direction parallel to the shoreline, 

either north or south.  By taking the median specific conductivity values on the side of the river 

with lower values, as opposed to taking the lowest value, variations in background values are 

corrected.  Mean and median differences between chosen background values and the lowest 

measured value on each day were 4.2 and 2.5 μS, respectively.  Mixing ratios less than 0.01 
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were treated as a value of zero for statistical analysis and modeling; this value was chosen 

based upon the accuracy of the conductivity meter (1% error).  Precise measurements cannot 

be obtained for lower values. 

𝐸𝑞 5.         𝑊 =
𝑀𝑧 − 𝐾2

𝐾1 − 𝐾2
 

3.4.2  End Member Mixing Model Construct 

 End Member mixing models were created to quantify the E. coli contribution of the Pike 

River to coastal waters.  End member mixing models were constructed using equation 3, one 

for each coastal location.  W x CR was defined as the portion of E. coli derived from the river and 

(1-W) x Cc was defined as the portion of the E. coli from non-river related sources.  Creating end 

member mixing models required defining the mixing ratio, using equation 5, the E. coli 

concentration of the river (CR), and the background E. coli concentration (Cc).  In practice, dates 

were examined where contributions from non-river sources could be treated as negligible (i.e. 

Cc could be treated as zero); for example when E. coli concentrations at coastal locations were 

an order of magnitude higher on one side of the river compared to the other.  These conditions 

indicate the river was the major driver of elevated E. coli concentrations.  Outliers were defined 

as 1) samples that had mixing rations equal to zero, or 2) dates when coastal E. coli 

concentrations were an order of magnitude higher than river concentrations, indicating other 

sources were responsible for the elevated counts. 

 Alternatively, equation 3 was manipulated to calculate Cc, an estimate of beach bacteria 

concentrations in the absence of river contributions (Equation 6).  In equation 6, Co represents 

measured coastal E. coli concentrations.  
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𝐸𝑞 6.        𝐶𝑐 =
𝐶𝑜 − (𝑊 ∗ 𝐶𝑅)

1 − 𝑊
 

3.4.3  Multiple Linear Regression Model Construct 

 Predictive models were created to compare the performance of traditional Virtual 

Beach MLR models to ensemble models, models which link the Pike River and coastal waters.  

Two types of predictive models were created; traditional VB MLR models and MLR models that 

were components of ensemble models (Table 2) (i.e. sub-ensemble models which represent the 

contributions from non-point sources).  Models were created for each sampling location and 

are referred to as location specific models.  Location specific models were created for each 

sampling location.  Additionally, models with data combined across multiple locations were 

created and were referred to as composite models.  Composite models were created for 

locations north of the river (A1-A3) and south of the river (P2-P4).  Sample compositing was 

justified based upon similar E. coli concentrations across beach transects. 

 Data was split into training (75% of data) and verification sets (remaining 25% of data) 

using a random number generator.  MLR models for the purpose of creating an ensemble 

model used a subset of training data that was identified to have mixing ratios less than 0.01 

(e.g. limited mixing occurring) to identify non-point sources of E. coli impacting coastal waters.  

All other MLR models (e.g. model for the river and traditional VB MLR models) used all available 

training data.   
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Table 2.  Description of predictive E. coli MLR models. 

List of E. coli predictive MLR models 

Traditional VB MLR Models 

Predictive model for location A3 (n=75) 
Predictive model for location A2 (n=75) 

Predictive model for location A1 (n=75) 

Predictive model for location P1 (n=73) 

Predictive model for location P2 (n=75) 

Predictive model for location P3 (n=75) 

Predictive model for location P4 (n=75) 

Predictive model for the Pike River (used to create ensemble models) 

Composite predictive model for locations A1-A3 (n=225) 

Composite predictive model for locations P2-P4 (n=225) 

Sub-Ensemble Models 

Predictive model with data removed when mixing was occurring at location A3 (n=55) 
Predictive model with data removed when mixing was occurring at location A2 (n=59) 

Predictive model with data removed when mixing was occurring at location A1 (n=50) 

Predictive model with data removed when mixing was occurring at location P1 (n=16) 

Predictive model with data removed when mixing was occurring at location P2 (n=27) 

Predictive model with data removed when mixing was occurring at location P3 (n=31) 

Predictive model with data removed when mixing was occurring at location P4 (n=32) 

Predictive model with data removed when mixing was occurring for locations A1-A3 
(n=164) (composite) 

Predictive model with data removed when mixing was occurring for locations P2-P4 
(n=90) (composite) 

 E. coli concentrations were log (base 10) transformed to achieve assumptions of 

normality.  Descriptive parameters were assigned ordinal values.  Water clarity corresponding 

to clear was assigned a value of 1, 2 for slightly turbid, 3 for turbid and 4 for opaque.  Cloud 

coverage corresponding to cloudy was assigned a value of 1, 2 for mostly cloudy, 3 for partly 

sunny, 4 for mostly sunny and 5 for sunny. Wind speed/direction and current speed/directions 

were converted into components perpendicular and parallel to the shoreline. 

 MLR models were created in Virtual Beach 3.0 (US EPA, 2013) to identify empirical 

relationships between explanatory variables (sanitary survey data, specific conductivity, 
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turbidity and river discharge) and E. coli concentrations.  Potential explanatory variables for E. 

coli concentrations were transformed using built in Virtual Beach 3.0 functions: log base 10, 

square, square root,   x-1/2 or no transformation.  Transformed parameters with the best fit 

between log transformed E. coli data (measured using Pearson’s Coefficient) were selected for 

the model build.  All possible combinations of MLR models were generated for each model run 

based upon input variables, and the model with the lowest Bayesian Information Criteria (BIC) 

was chosen to provide parsimony and avoid overfitting data.  

3.4.4  Ensemble Model Construct 

 Ensemble models (n=7) were created for each coastal location using the MLR model for 

the river, the mixing ratio on each respective date and the sub-ensemble model created for 

each sample location under assumptions of no mixing by combing the models according to 

equation 4. 

3.4.5  Statistical Analysis 

 Statistical analysis was performed using Sigma Plot 12.03 (Systat Software Inc., San Jose, 

Ca).  Results were considered significant if p values were less than 0.05 (α=0.05).  Prior to 

analysis, a Shapiro-Wilk test was performed to test for normality and equal variance.  

Comparison tests were chosen based upon the distribution of the data, either Kruskal-Wallis 

test (ANOVA on ranks; data that failed normality or equal variance tests) or one-way analysis of 

variance (ANOVA; normally distributed data with equal variance).  If significant differences were 

found amongst the population, post hoc test (Dunn’s or Tukey post hoc) were used to 

determine where differences occurred. To test for statistical dependence, Pearson’s product 
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moment correlation coefficients (r) (normally distributed data) or Spearman’s rank correlation 

coefficients (ρ, rho) (for non-parametric data) were calculated.  For box-whisker plots, the 

lower whisker represents the minimum value, the lower part of the box represents the 25th 

percentile, the center line represents the median, the top of the box represents the 75th 

percentile and the top of the whisker represents the maximum value. 

 Model fits were evaluated by calculating coefficients of determination (R2).  Model fit 

for the ensemble and conventional MLR models were also evaluated by calculating RMSE, 

sensitivity and specificity based upon their ability to predict the appropriate public notification 

using a BAV of 235 MPN/100 ml E. coli.    Sensitivity was defined as the fraction of exceedances 

accurately predicted.  Specificity was defined as the fraction of non-exceedances accurately 

predicted.  Type I errors were created when models predicted E. coli concentrations above the 

BAV when actual E. coli concentrations were less (false positive).  Type II errors were generated 

when actual E. coli concentrations were above the BAV and models failed to predict values 

above the BAV (false negative). 
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4.  Results 

4.1  E. coli 

 In total, 698 water samples were collected on 100 days from Alford and Pennoyer Park 

during May, June, July and August of 2012, 2013 and 2014.  Associated E. coli concentrations 

from coastal locations ranged from below the limit of detection (<10 MPN/100 ml) to 19,862 

MPN/100 ml (Table 3).  The geometric mean E. coli concentrations ranged from 42 to 75 

MPN/100 ml at coastal locations with 15 to 31 percent of samples exceeding BAVs (>235 

MPN/100 ml E. coli), location dependent.  

Table 3. Summary of E. coli (MPN/100ml) data by sample location (2012-2014). 

E. coli concentrations (MPN/100ml) and % exceedances of BAVs by sample location 

Sample location A3 A2 A1 PR P1 P2 P3 P4 

Number of Samples (n) 100 100 100 100 98 100 100 100 

Minimum <10 <10 <10 <10 <10 <10 <10 <10 

Maximum 8,164 4,611 19,862 24,192 6,131 6,867 8,664 5,475 

Geometric mean 42 52 52 320 62 69 75 68 

Exceedances (>235) (%) 15 16 17 46 23.5 26 31 30 

An additional 100 water samples were collected from the mouth of the Pike River on the 

same dates.  E. coli concentrations from the Pike River ranged from below the limit of detection 

to 24,192 MPN/100 ml, with a geometric mean value of 320 MPN/100 ml (arithmetic mean= 

2,328 MPN/100 ml). Forty-six percent of samples from the Pike River had E. coli concentrations 

that exceeded the BAV.  Pike River E. coli values were analyzed to determine factors effecting 

concentration.  There was a significant positive correlation between log transformed river 

discharge volumes and log transformed Pike River E. coli concentrations (n=100, r=0.603, 

p<0.05) (Figure 3).  Discharge volumes were further grouped into wet (>0.00 cm precipitation 

within 24 hours prior to sampling) and dry weather events.  A Mann Whitney test indicated 
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significantly higher discharge volumes following precipitation (p<0.05) (Figure 4).  Therefore, 

Pike River discharge volumes and E. coli concentrations increase following precipitation events. 

  

Figure 3.  Comparison between log transformed Pike River E. coli concentrations (MPN/100ml) 
and discharge volumes (m3/s).   

 

Figure 4.   Pike River discharge (m3/s) under wet and dry weather conditions prior to sampling 
events (>0.00 cm precipitation in the 24 hours prior to sampling constitutes a wet weather 
event).  Significantly higher discharge volumes associated with wet weather events (Wet 
weather: n=47, median=0.453 m3/s; Dry weather: n=53, median=0.238 m3/s) (p<0.05, Mann 
Whitney Test). 
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 Log transformed E. coli concentrations from coastal locations and the Pike River were 

grouped by sample location. A Shapiro-Wilk test was performed indicating the data was not 

normally distributed (p<0.05).  A One Way Analysis Variance on Ranks (ANOVA on Ranks) was 

performed to determine if E. coli concentrations differed significantly by sampling location.  

Results from the ANOVA on Ranks indicated differences amongst the population (p<0.05) and a 

Dunn’s post hoc test indicated significantly higher E. coli concentrations from  Pike River 

samples compared to all coastal locations (p<0.05); no other differences were noted.  Results 

indicate the river has the potential to serve as a source of E. coli contamination to coastal 

locations.   

4.2  Specific Conductivity 

 Specific conductivity values from samples collected from Alford and Pennoyer Park 

ranged from 275 to 789 μS (median of 312 to 326 μS). Pike River values ranged from 415 to 

1108 μS (median of 730 μS) (Table 4).    Background specific conductivity levels, K2, were 

determined on each day for the purpose of calculating mixing ratios (see section 3.4.1).  K2 

values ranged from 280 to 351 μS with a median value of 310 μS.   
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Table 4.  Summary of specific conductivity (μS) by sampling location.  Significantly higher 
specific conductivity values associated with the Pike River compared to coastal locations 
(p<0.05; ANOVA on Ranks). 

Specific conductivity (μS) by sampling location 

Sampling location A3 A2 A1 PR P1 P2 P3 P4 

Number of Samples (n) 100 100 100 100 98 100 100 100 

Minimum 281 279 278 415 283 277 275 280 

10th Percentile 295 293 296 538 306 302 300 299 

25th Percentile 304 304 306 613 313 311 309 308 

50th Percentile (Median) 312 313 314 730 326 322 320 318 

75th Percentile 326 328 338 856 376 374 338 337 

90th Percentile 354 353 369 945 510 458 423 389 

Maximum 435 514  517 1108 727 789 680 543 

 Specific conductivity values were grouped by sampling location and a Shapiro-Wilk test 

was performed indicating the data was not normally distributed (p<0.05).  An ANOVA on Ranks 

was performed to determine whether specific conductivity differed by sampling location.  

Results from the ANOVA on Ranks indicated differences amongst the population (p<0.05) and a 

Dunn’s post hoc test indicated significantly higher specific conductivity values in samples from 

the Pike River compared to all coastal locations (p<0.05).  This indicates the mixing of the river 

into coastal waters will imprint elevated specific conductivity levels.  These elevated values can 

be used to quality the ratio of river water present in coastal waters.   

4.2.1  Accuracy - Sources Mixing of Error 

 Several factors can influence the accuracy of mixing calculations.  It was assumed 

specific conductivity levels were constant across the study area on each date, with the 

exception of changes caused by river mixing.  During the study period, there were a sub-set of 

days when a sandbar formed across the mouth of the river, preventing discharge.  The accuracy 

of mixing ratios was evaluated on this subset of dates, i.e. when river discharge did not occur.  
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Mean specific conductivity varied on this subset of dates: 308, 307, 307, 328, 318, 310 and 310 

μS at locations A3, A2, A1, P1, P2, P3 and P4 respectively.  Significant differences were present 

between sampling locations P1 and A2 and A3 (p<0.05; ANOVA with Tukey post hoc test).  

Although visual observations indicated direct mixing did not occur, i.e. the sand bar was 

blocking the river’s mouth; the calculations indicate that the elevated specific conductivity were 

due to mixing.  Therefore the assumption that specific conductivity levels are similar across all 

sampling locations, except for days with river contributions, may be invalid close to the river’s 

mouth.     

4.2.2  Precision – Sources of Mixing Error 

 Mixing calculations also assume a large difference in tracer levels/concentrations 

between the source and receiving body.  Specific conductivity levels in samples from the Pike 

River were grouped by the amount of precipitation received in the 24 hours prior to sampling. 

Events with 0.00 cm of rain were considered dry weather events, the remainder were 

considered wet weather events.  A Shapiro-Wilk test was performed indicating the data was 

normally distributed with equal variance (p>0.05).  Lower specific conductivity levels in the river 

discharge were associated with wet weather events (wet weather: mean=694 μS, σ=146, vs. dry 

weather: mean= 776 μS, σ=157) (p<0.05, T-test).  Mixing ratios were measured as the 

difference between coastal and river conductivity levels. Therefore, the precision of calculated 

mixing ratios is reduced following precipitation events (i.e. river and coastal specific 

conductivity values are more similar).   
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4.3  Mixing Ratios 

 Calculated mixing ratios were analyzed to determine factors associated with the 

blending of river water into coastal locations.  Factors evaluated include spatial variation, 

longshore current direction, wind direction and volume of river discharge.   

4.3.1  Spatial Variability   

 Between 35 (35%) and 69 (70%) samples per location had a mixing ratio above 0.01 

(Table 5).  There was a greater frequency of mixing events at Pennoyer Park (50 – 69 samples 

depending upon sampling location) compared to Alford Park (29 – 41 samples depending upon 

sampling location).  Mixing ratios were grouped by locations north (Alford Park) and south 

(Pennoyer Park) of the river’s mouth.  A Shapiro-Wilk was performed indicating the data was 

not normally distributed (p<0.05).  An ANOVA on Ranks was performed to determine if mixing 

ratios differed based upon their position relative to the river’s mouth (p<0.05).  There were 

significantly higher mixing ratios at locations south of the river (25th percentile= 0.00, 

median=0.02, 75th percentile=0.12) compared to locations to the north (25th percentile= 0.00, 

median=0.00, 75th percentile=0.02) (p<0.05, Dunn’s post hoc test).  Although the magnitude 

and frequency of mixing was greater at Pennoyer Park, environmental variables which are 

hypothesized to influence the direction of mixing (wind and longshore current direction) were 

not predictive of mixing occurring more frequently to the south of the river (Table 6).   

  



www.manaraa.com

34 
 

Table 5. Summary of mixing ratios.  Mixing ratios less than 0.01 treated as 0.00. 

Mixing ratio by sampling location 

Location A3 A2 A1 P1 P2 P3 P4 

Number of Samples (n) 100 100 100 98 100 100 100 

Number of samples 
with mixing (>0.01) 35 29 41 69 57 50 51 

Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

10th percentile 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

25th percentile 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Median 0.000 0.000 0.000 0.047 0.016 0.005 0.010 

75th percentile 0.022 0.018 0.043 0.142 0.165 0.098 0.062 

90th percentile 0.124 0.111 0.176 0.350 0.327 0.254 0.181 

Maximum 0.315 0.292 0.374 0.918 0.898 0.862 0.482 

Average 0.030 0.028 0.045 0.125 0.101 0.078 0.055 

Table 6.  Summary of longshore current and wind direction at the time of sample collection. 

Longshore current and wind direction at the time of sample collection 

Longshore Current 
Direction Alford and Pennoyer Park (n) 

North 51 

South 49 

Wind direction Alford Park (n) Pennoyer Park (n) 

North 18 18 

Northeast 14 10 

East 4 5 

Southeast 7 6 

South 19 20 

Southwest 14 16 

West 16 13 

Northwest 8 12 

 The mixing of the river into coastal waters was evaluated with the respect to the 

distance from the river to sampling sites.  The median (Pennoyer Park only), 75th percentile, 90th 

percentile and maximum mixing ratios at each location were compared to the distance from 

the sampling location to the river’s mouth (Figures 5 and 6).  At Pennoyer Park, the mixing ratio 

decreased successively with increasing distance from the river’s mouth.  There was a large 
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decrease in the maximum ratio at distances of 400 meters from the river’s mouth compared to 

closer locations (0.86-0.91 vs. 0.48).  However, r values between mixing ratios and the distance 

between sampling locations were below the threshold required to indicate significant linear 

trends (p>0.05), with the exception of the 90th percentile (p<0.05) (Median ratio, r= -0.787; 75th 

percentile ratio, r= -0.884; 90th percentile ratio, r= -0.988; maximum ratio, r= -0.876).    

 
Figure 5. Mixing ratios at Pennoyer Park sampling locations in comparison to distance from 
river’s mouth.  Pearson’s product moment correlation coefficients were not significant 
(p>0.05) except for the 90th percentile (p<0.05) (median ratio, r= -0.787; 75th percentile ratio, 
r= -0.884; 90th percentile ratio, r= -0.988; maximum ratio, r= -0.876). 
 
 Similar trends were observed with sampling locations at Alford Park; 75th percentile, 90th 

percentile and maximum mixing ratios were lower at location A3 compared to A1. However, 

75th percentile, 90th percentile and maximum mixing ratios were greater at location A3 

compared to A2.  Similar to Pennoyer Park, r values did not indicate a significant linear trend at 

Alford Park (75th percentile, r= -0.796; 90th percentile, r= -0.769; maximum, r= -0.714).  At both 

beaches, the mixing generally decreased with increasing distance from the river’s mouth; 

however, trends were not linear. 
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Figure 6. Mixing Ratio at Alford Park in comparison to distance from river’s mouth.  Pearson’s 

product moment correlation coefficients were not significant (p<0.05) (75th percentile, r= -

0.796; 90th percentile, r= -0.769; maximum, r= -0.714). 

4.3.2  Longshore Current Direction 

 Longshore current directions were compared to mixing ratios to determine its influence 

on the directionality of river mixing.  Longshore current directions were observed to be north 

on 51 days and south on 49 days.  Mixing ratios were combined based upon their location 

relative to the river’s mouth (Alford Park = North, Pennoyer Park = South) and grouped by the 

longshore current direction.  A Shapiro-Wilk test was performed indicating the data was not 

normally distributed (p<0.05).  A Mann-Whitney Rank Sum test was performed and results 

implied higher mixing ratios at Alford Park with northern longshore currents and at Pennoyer 

Park with southern longshore currents compared to the alternative direction (p<0.05).  The 

mixing ratios at each sampling location were further evaluated using a Mann-Whitney Rank 

Sum test.  Significantly higher mixing ratios were associated with northern longshore currents 

compared to southern ones at locations A1, A2 and A3 (p<0.05) (Figure 7).   
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Figure 7.  Mixing ratio compared to longshore current direction at Alford Park.  Significant 
differences present between mixing ratios at location A3-northern current (median= 0.0121, 
75th percentile= 0.0766) and A3-southern current (median= 0.000, 75th percentile= 0.000), A2-
northern current (median= 0.000, 75th percentile= 0.0965) and A2-southern current (median= 
0.000, 75th percentile= 0.000), and A1-northern current (median= 0.0184, 75th percentile= 
0.141) and A1-southern current (median= 0.000, 75th percentile= 0.000) (p<0.05, Mann-
Whitney Test). 
 
 Conversely, significantly higher mixing ratios were associated with southern longshore 

currents at locations P2, P3 and P4 (p<0.05) (Figure 8); no differences were noted at location P1 

(p=0.109).  The direction of the longshore current had a significant influence on river mixing at 

each beach and all locations except P1.  Mixing generally followed the direction of the 

longshore current. 
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Figure 8.  Mixing ratio compared to longshore current direction at  Pennoyer Park. Significant 
differences present between mixing ratios at location P2-northern current (median= 0.000, 
75th percentile= 0.023) and P2-southern current (median= 0.064, 75th percentile= 0.234), P3-
northern current (median= 0.000, 75th percentile= 0.012) and P3-southern current (median= 
0.046, 75th percentile= 0.194), and P4-northern current (median= 0.000, 75th percentile= 
0.010) and P4-southern current (median= 0.046, 75th percentile= 0.151) (p<0.05, Mann-
Whitney Test).  No differences noted between mixing ratios for locations P1 (northern 
current: median= 0.024, 75th percentile= 0.153; southern current: median= 0.056, 75th 
percentile= 0.172) (p<0.05 Mann-Whitney Test). 
 

4.3.3  Wind Direction 

 There were slight variations in wind direction between samples collected at Alford Park 

and those collected from Pennoyer Park due to differences in sample collection time (Alford 

Park=8:54am; Pennoyer Park=9:20am) (Figure 9).  Although wind directions were similar, there 

were several more dates with northwest (12 vs. 8) and southwest (16 vs. 14) winds at Pennoyer 

Park compared to Alford Park.  At Alford Park, there were several more dates with northeast 

(14 vs. 10) and west (16 vs. 13) winds compared to Pennoyer Park.  Overall, the wind direction 

in order of most frequent to least frequent direction was: south, north, southwest, west, 

northeast, northwest, southeast and east. 
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Figure 9.  Number of dates with each wind directions at Alford and Pennoyer Park.  Radial 
axis represents the number of dates with each wind direction.   
 
 Mixing ratios were compared to wind directions to determine its influence on the 

direction of river mixing. Mixing ratios were grouped at locations north of the river (Alford Park) 

by the cardinal and intercardinal wind direction at the time of sample collection.  A Shapiro-

Wilk test was performed indicating the data was not normally distributed (p<0.05).  An ANOVA 

on ranks test (p<0.05) and Dunn’s post-hoc test was performed indicating significantly higher 

mixing ratios with south compared to west, northwest, north, northeast, east and southeast 

wind directions (p<0.05) (Figure 10).   
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Figure 10.  Mixing ratios at Alford Park compared to wind direction.  Significantly higher mixing 

ratios were associated with south compared to west, northwest, north, northeast, east and 

southeast wind directions (p<0.05; ANOVA on ranks, p<0.05) 

 Similarly, mixing ratios were grouped at locations south of the river (Pennoyer Park) by 

the cardinal and inter-cardinal wind direction at the time of sample collection.  A Shapiro-Wilk 

test was performed indicating the data was not normally distributed (p<0.05).  An ANOVA on 

ranks test was performed indicating differences amongst the population (p<0.05). A Dunn’s 

post hoc test determined significantly higher mixing ratios with northwest, north, northeast, 

east, southeast, and south compared to southwest winds (p<0.05) (Figure 11).  Additionally, 

higher mixing ratios were associated with north and northeast compared to west winds 

(p<0.05).   
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Figure 11.  Mixing ratios at Pennoyer Park compared to wind direction.  Significantly higher 
mixing ratios were associated with northwest, north, northeast, east, southeast, and south 
compared to southwest winds (p<0.05); higher mixing ratios were associated with north and 
northeast compared to west winds (p<0.05; ANOVA on rank).   

 Wind direction influenced the directionality of river mixing.  Mixing was more prevalent 

with south winds at locations to the north of river (Alford Park).  At locations to the south of the 

river (Pennoyer Park), mixing was less prevalent with southwest and west winds.  During the 

course of the study, there were more instances of wind direction favoring river mixing towards 

Pennoyer Park rather than Alford Park. 

4.3.4  River Discharge 

 River discharge volumes were compared to mixing ratios at each sampling location 

(Table 7).  River discharge volumes ranged from 0.14 to 8.08 cubic meters per second with a 

median discharge volume of 0.31 cubic meters per second.  There were significant positive 

correlations between mixing ratios and discharge volumes at locations P1, P2, P3 and P4 on all 

sampling dates (p<0.05).   
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Table 7.  Spearman correlations (rho) between mixing ratio and discharge volume overall and 

binned by longshore current direction.  Bolded values are significant.   

Correlation between discharge volume overall and binned by longshore current 
direction 

 
Location 

Northern Longshore 
Current 

Southern Longshore 
Current 

Overall 

n ρ (rho) p n ρ (rho) p n ρ (rho) p 

A3 51 0.107 0.453 49 -0.217 0.134 100 0.042 0.677 

A2 51 0.155 0.276 49 -0.0134 0.927 100 0.052 0.606 

A1 51 0.267 0.058 49 0.186 0.199 100 0.169 0.093 

P1 50 0.362 0.009 48 0.118 0.419 98 0.251 0.012 

P2 51 0.231 0.102 49 0.528 <0.001 100 0.354 <0.001 

P3 51 0.212 0.134 49 0.522 <0.001 100 0.331 0.001 

P4 51 0.194 0.172 49 0.534 <0.001 100 0.318 0.001 

 River discharge volumes were grouped based upon longshore current direction at the 

time of sample collection to control for factors influencing the direction of river mixing.  Data 

was not normally distributed (Shapiro-Wilk, p<0.05).  Higher discharge volumes were associated 

with northern compared to southern longshore current directions (Mann-Whitney Test, p<0.05) 

(Figure 12).  When examining dates with northern longshore currents, significant correlations 

were present between river discharge volume and mixing ratios at location P1 (p<0.05).  With 

southern longshore currents, there were significant positive correlations between mixing ratios 

and discharge volumes at locations P2, P3 and P4 (p<0.05).  No correlations were noted at 

Alford Park locations (p>0.05). 
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Figure 12.  Pike River discharge volume compared to longshore current direction.  
Significantly higher discharge volumes were associated with southern, compared to northern 
longshore current directions (p<0.05; Mann-Whitney Test). 
 
 Higher river discharge volumes increased mixing at all locations to the south of the 

beach, but not at northern locations.  Discharge volumes were smaller with northern longshore 

currents.  Correlations between discharge volumes and mixing ratios were also observed at 

locations P2, P3, and P4 when binning the data by a southern longshore current direction.  

Mixing occurred close the river’s mouth (P1) independent of discharge volumes when a 

southern longshore current was present.  However, elevated discharge volumes increased river 

mixing at location P1 when a northern longshore current was present. 

4.4  End Member Mixing Models 

 End member mixing models were created to provide an estimate of river E. coli 

contributions to coastal waters. 
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4.4.1  Evaluation of End Member Mixing Models (EMMM) 

 A subset of data (n=10 days) was evaluated when there was an order of magnitude 

difference in geometric mean E. coli concentration between Pennoyer Park and Alford Park, 

indicating the river was likely contributing to the differences in bacteria concentrations.  These 

conditions allowed background E. coli concentrations within the EMMM to be treated as zero.  

All dates with a magnitude higher geometric mean E. coli concentration were associated with 

Pennoyer Park.  Outliers were removed from the data set prior to analysis.  Four outliers (one at 

each sampling location; P1-P4) were associated with a single date when coastal E. coli 

concentrations at Pennoyer Park were elevated (geometric mean=1,296MPN/100 ml) and river 

E. coli concentrations were low (41 MPN/100 ml) and could not explain elevated coastal 

bacteria levels.  One other outlier was associated with sampling location P1. On this date, the 

mixing ratio was zero indicating no contribution from the river at location P1, while measured 

E. coli concentrations were 109 MPN/100 ml.  Concentrations at Alford Park (unmixed zone) 

ranged from 41 to 86 MPN/100 ml and concentrations at Pennoyer Park ranged from 573 to 

1850 MPN/100 ml on this date (excluding P1). 

 Within this subset (described above), E. coli contributions from the river to coastal areas 

were estimated and compared to observed concentrations (Figure 13).  Overall, estimated E. 

coli contributions correlated significantly with observed concentrations (p<0.05, R2=0.5486, 

n=34).  At locations P2 (n=9, R2=0.8002) and P3 (n=9, R2=0.9282) model fit was excellent and 

the slope of the regression with the y-intercept set to zero approximated a 1:1 fit (1.014 and 

1.009 at locations P2 and P3 respectively). The amount of variation in coastal E. coli 
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concentrations explained by the model at location P4 was lower (n=9, R2=0.5773) than P2 and 

P3 However, the slope also approximated a 1:1 fit (1.034).  Model fit was extremely low at 

location P1 in comparison to other locations, (n=8, R2=0.1704).  Additionally, the slope of the 

line which best fit the data was below 1.0 (0.892) indicated the model generally predicted 

higher E. coli contributions than measured.  End member mixing models (EMMM) were able to 

accurately estimate coastal E. coli concentrations on this subset of data with the exception of 

the location closest to river’s mouth (P1).   

 

Figure 13.  Comparison between observed and predicted E. coli concentrations at coastal 
locations using an end member mixing model under conditions when the Pike River is 
suspected as the major source of E. coli contamination.  Five outliers associated with 
dates/locations when no mixing was occurring or when Pike River E. coli concentrations were 
low and could not explain elevated coastal concentrations.  Eight, nine, nine and nine 
samples were associated with locations P1, P2, P3 and P4 respectively. 
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4.4.2  Estimated E. coli Contribution of the Pike River to Coastal Waters 

 Estimated E. coli contributions from the Pike River to coastal waters were calculated as 

the product of the mixing ratio and E. coli concentration of the river (Figures 14-20).  Estimated 

E. coli contributions from the river to coastal locations ranged from zero to 11,829 MPN/100 ml 

(Table 8).  In all instances, mixing ratios were below 1.00 and estimated E. coli contributions to 

coastal locations were below the concentration of the river.   

 
Figure 14.  Estimated contributions of E. coli from the Pike River to location A3 (n=100).  E. 
coli contributions from the Pike River to coastal locations were estimated as the product of 
the mixing ratio and actual river E. coli concentrations.   
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Figure 15.  Estimated contributions of E. coli from the Pike River to location A2 (n=100).  E. 
coli contributions from the Pike River to coastal locations were estimated as the product of 
the mixing ratio and actual river E. coli concentrations.   
 

 
Figure 16.  Estimated contributions of E. coli from the Pike River to location A1 (n=100).  E. 
coli contributions from the Pike River to coastal locations were estimated as the product of 
the mixing ratio and actual river E. coli concentrations.   
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Figure 17.  Estimated contributions of E. coli from the Pike River to location P1 (n=98).  E. coli 
contributions from the Pike River to coastal locations were estimated as the product of the 
mixing ratio and actual river E. coli concentrations.   
 

 
Figure 18.  Estimated contributions of E. coli from the Pike River to location P2 (n=100).  E. coli 
contributions from the Pike River to coastal locations were estimated as the product of the 
mixing ratio and actual river E. coli concentrations.   
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Figure 19.  Estimated contributions of E. coli from the Pike River to location P3 (n=100).  E. coli 
contributions from the Pike River to coastal locations were estimated as the product of the 
mixing ratio and actual river E. coli concentrations.   
 

 
Figure 20. Estimated contributions of E. coli from the Pike River to location P4 (n=100).  E. coli 
contributions from the Pike River to coastal locations were estimated as the product of the 
mixing ratio and actual river E. coli concentrations.   
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Table 8.  Summary of Pike River E. coli (MPN/100 ml) contributions to costal locations.  Pike 
river E. coli contribution to coastal locations estimated as the product of the mixing ratio and 
Pike River E. coli concentration. 

Estimated E. coli contributions (MPN/100ml) from the Pike River to coastal locations 

Location A3 A2 A1 P1 P2 P3 P4 

Median 0 0 0 7 2 0 0 

75th Percentile 3 1 11 81 42 18 14 

90th Percentile 23 22 80 539 805 1,157 372 

Maximum 1,784 1,163 1,725 9,283 11,829 9,283 6,980 

 Estimated E. coli contributions from the Pike River were grouped by sample location.  A 

Shapiro-Wilk test was performed indicating the data was not normally distributed (p<0.05).  An 

ANOVA on Ranks was performed to determine whether estimated E. coli contributions differed 

by sampling location.  Results from the ANOVA on Ranks indicated differences amongst the 

population (p<0.05).  A Dunn’s post hoc test determined higher contributions at location P1 

compared to A1, A2 and A3 (p<0.05).  Additionally, higher contributions from the river were 

estimated to occur at location P2 compared to A2 (p<0.05). 

 Measured coastal E. coli concentrations were compared to estimated contributions 

from the Pike River at each sampling location (Figures 21-27).  R2 values between estimated 

contributions from the Pike River and actual coastal E. coli concentrations were 0.1018, 0.0771, 

0.0549, 0.1386, 0.4194, 0.4106 and 0.4370 at locations A3, A2, A1, P1, P2, P3 and P4 

respectively.  Correlations between estimated Pike River E. coli contributions and actual coastal 

E. coli concentrations were greater than direct correlations between specific conductivity and 

coastal E. coli concentrations at all sampling locations (See Appendix A).  Correlations between 

estimated contributions from the Pike River and actual coastal E. coli concentrations indicate 

river E. coli contributions explain more of the variation in coastal E. coli concentrations at 
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Pennoyer Park than Alford Park.  However, there were several cases at each sampling location 

when estimated E. coli contributions from the Pike River to coastal waters were above actual 

values. However, no estimates were greater than an order of magnitude higher than actual.  

 

Figure 21. Comparison between estimated E. coli contributions from the Pike River and actual 
concentrations at location A3 (n=100).   River E. coli contributions to costal locations were 
estimated as the product of the mixing ratio and actual river E. coli concentrations.   
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Figure 22. Comparison between estimated E. coli contributions from the Pike River and actual 
concentrations at location A2 (n=100).   River E. coli contributions to costal locations were 
estimated as the product of the mixing ratio and actual river E. coli concentrations.   

 
Figure 23. Comparison between estimated E. coli contributions from the Pike River and actual 
concentrations at location A1 (n=100).   River E. coli contributions to costal locations were 
estimated as the product of the mixing ratio and actual river E. coli concentrations.   
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Figure 24. Comparison between estimated E. coli contributions from the Pike River and actual 
concentrations at location P1 (n=98).   River E. coli contributions to costal locations were 
estimated as the product of the mixing ratio and actual river E. coli concentrations.   

 
Figure 25. Comparison between estimated E. coli contributions from the Pike River and actual 
concentrations at location P2 (n=100).   River E. coli contributions to costal locations were 
estimated as the product of the mixing ratio and actual river E. coli concentrations.   
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Figure 26.  Comparison between estimated E. coli contributions from the Pike River and 
actual concentrations at location P3 (n=100).   River E. coli contributions to costal locations 
were estimated as the product of the mixing ratio and actual river E. coli concentrations.   

 
Figure 27.  Comparison between estimated E. coli contributions from the Pike River and 
actual concentrations at location P4 (n=100).   River E. coli contributions to costal locations 
were estimated as the product of the mixing ratio and actual river E. coli concentrations.   
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4.4.3  Exceedances of BAVs Attributed to the Pike River 

 The number of E. coli BAVs exceedances associated with the Pike River was estimated at 

each sample location by removing the estimated E. coli contribution of the Pike River from the 

observed concentrations and then correcting for the river’s dilution effect (Equation 6) (Table 

9).  Two or three exceedances of E. coli standards were associated with the Pike River at Alford 

Park, sampling location dependent, and between six and 11 were associated with Pennoyer 

Park.  Most of the exceedances of BAVs were associated with wet weather events.  Overall, it 

was estimated the Pike River was responsible for between 12 and 15 percent of exceedances of 

BAVs at Alford Park and between 26 and 42 percent at Pennoyer Park. 

Table 9.  E. coli BAV exceedances (E. coli >235 MPN/100ml) associated with the Pike River.  

Exceedances of BAV calculated by removing estimated E. coli concentrations from the Pike 

River from coastal locations (See equation 6). 

Estimated BAV exceedances caused by Pike River E. coli contributions 

Location A3 A2 A1 P1 P2 P3 P4 

Number of Exceedances 
(>235 MPN/100ml E. coli) 

15 16 17 23 26 31 30 

Estimated exceedances 
caused by river 

3 3 2 6 11 10 9 

Estimated wet weather 
exceedances caused by river 
(rainfall >0.00 cm) 

3 2 2 3 7 5 4 

Estimated exceedances 
without river influence 

12 13 15 17 15 21 21 

Percent exceedances 
related to river 

20% 19% 12% 26% 42% 32% 30% 

4.5  Predictive Models 

 Predictive E. coli models were created to determine the model performance of 

ensemble models, which accounts for Pike River E. coli contributions, in comparison to 
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traditional VB MLR models, which do not explicitly model point source contributions.  

Additional visualizations and statistics on model performance are located in Appendix B. 

4.5.1  Traditional VB MLR Models 

 Traditional VB MLR predictive E. coli models were created using Virtual Beach 3.0 (US 

EPA, 2013) for each sampling location, including the Pike River, using all training set data (75% 

of data) (Table 10).  Common model variables included river discharge volume, wave height, 

current velocity vectors, water clarity, turbidity, air temperature and mixing ratios.  Models 

were optimized for lowest BIC to provide parsimony and avoid over fitting data.  Associated R2 

and RMSE values between modeled and observed log transformed E. coli concentrations 

ranged from 0.162 to 0.620 and 0.499 and 0.730 respectively using training set data.   
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Table 10.  Traditional VB MLR model description and summary statistics for training set. 

Traditional VB MLR model description and summary statistics for training set data  

Location Traditional VB Model Equation n R2 RMSE 

A3 
0.109712 + 0.000787724 x (Air Temp)2 + 0.518479 x 
Log(Turbidity) + 0.492249 x Log(River Discharge) 

75 0.324 0.551 

A2 
0.840957+ 0.0830368 x (Wave Intensity)2 + 
0.042491 x (Current Velocity North)-1/2 + 0.522497 x 
Log(River Discharge) 

75 0.252 0.603 

A1 
1.14182e + 1.3732 x (Field Estimated Wave 
Height)2 

75 0.162 0.730 

P1 
-0.839038 - 0.322747 x Rainfall Amount + 1.10281 x 
(Water Clarity)1/2 + 0.989892 x Log (River 
Discharge) 

73 0.500 0.578 

P2 
0.721452 - 0.706055 x (GLCFS Wave Height)1/2 + 
0.320953 x (Water Clarity) + 0.933066 x 
Log(Turbidity) 

75 0.564 0.636 

P3 
0.591458 + 1.30403 x (Mixing Ratio)1/2 - 0.0524481 
x (GLCFS Wave Height)2 + 0.497522 x (Clarity) 

75 0.499 0.673 

P4 
0.506573 + 1.50591 x (Mixing Ratio)1/2 + 1.18794 x 
(Field Estimated Wave Height)1/2 - 0.764307 x 
[GLCFS Wave Height]1/2 + 0.479075 x (Clarity) 

75 0.620 0.578 

Pike River 4.08672 - 5.56256 x (River Discharge)-1/2 75 0.409 0.681 

A1-A3 
Composite 

0.0635857 – 0.442639 x (Rainfall)1/2 - 213.335 x 
(Current Velocity East)2 + 0.334406 x Log(Coastal 
Turbidity) + 0.40035 x Log (Pike Discharge) + 
0.00546898 x (Pike Turbidity)+ 0.00166763 (Pike 
Water Temp)2 

225 0.339 0.587 

P2-P4 
Composite 

0.218114 + 0.733196 x (Mixing Ratio)1/2 + 
0.000699667 x (Air Temp)2 -0.317264 (Rainfall)1/2 – 
1.62202 x (Current Velocity East)1/2 – 0.906949 x 
(GLCFS Wave Height)1/4 +0.386537 x (Clarity) + 
0.3404 x log (Turbidity) + 0.604707 x Log(Pike 
Discharge) 

225 0.616 0.584 

4.5.2  Sub-Ensemble Models 

 Sub-ensemble models were created for each coastal location using the same training set 

data when the mixing ratio was equal to zero (Table 11).   These models were combined with 
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modeled Pike River E. coli concentration to create ensemble models using equation 4.  

Associated R2 and RMSE values between modeled and actual log transformed E. coli 

concentrations ranged from 0.301 to 0.757 and 0.432 and 0.741 respectively using training set 

data.  Common model variables included river discharge volume, longshore current direction, 

wave height, wave intensity, current velocity vectors, wind velocity vectors, water clarity, and 

air temperature.   

Table 11.  Sub-ensemble MLR model description and summary statistics for training set. 

Sub-ensemble MLR model description and summary statistics for training set data 

Location Sub-Ensemble Model Equation n R2 RMSE 

A3 

-0.126859 + 0.546052 x (Longshore Current Direction) - 
0.217015 x (Rainfall Amount) + 0.00864766 x (Wind Speed 
North)1/2 + 0.0940627 x (Wave Intensity)2 + 95.5112 x 
Log(Current Velocity North) + 0.920896 x Log(River Discharge) 

55 0.585 0.432 

A2 
1.10956 + 0.103089 x (Wave Intensity)2 + 0.0544718 x (Current 
Velocity East)-1/2 + 0.0586274 x (River Discharge)1/2 

59 0.301 0.635 

A1 
0.314699 + 0.00156576 x (Air Temp)2 + 1.53392 x (Field 
Estimated Wave Height)1/2 - 612.413 x (Current Velocity East)2 

50 0.357 0.741 

P1 
0.39142 + 0.00124674 x (Air Temp)2 + 0.679469 x (Clarity) - 
2.69691 x (River Discharge)-1/2 

16 0.757 0.464 

P2 
1.47442 - 8.40296 x (Air Temp)-1/2 - 0.445846 x (Wave Intensity) 
- 4.55137 x (Current Velocity East)1/2 + 0.888624 x (Current 
Velocity North)1/2 + 1.88215 x (Clarity)1/2 

27 0.749 0.465 

P3 
0.67356 - 2.55171 x (Current Velocity East)1/2 - 0.0744804 x 
(GLCFS Wave Height)2 + 0.828889 x (Clarity)1/2 

31 0.341 0.711 

P4 
0.915946 - 0.292551 x (Wind Velocity North)-1/2 - 10.4271 x 
(Current Velocity East) + 0.0934215 x (Clarity)2 

32 0.539 0.442 

A1-A3 
Composite 

-0.269677 - 0.486821 x (Rainfall Amount) 2 -276.75 x (Current 
Velocity East)2 + 0.354208 x Log(Coastal Turbidity)+ 0.292203 x 
(River Discharge)1/4 + 0.00611664 x (Pike Turbidity) + 
0.00200401 x (Pike Water Temp) 

164 0.386 0.609 

P2-P4 
Composite 

0.875454 - 0.826865 x (Cloud Cover)-1/2 – 0.110025 x (Wave 
Intensity) - 4.50461 x (Current Velocity East)1/2 + 0.5029 x 
(Current Velocity North)1/4 + 0.294084 x (GLCFS Wave Height)-1/2 
+ 0.483947 x (Clarity) +0.000133193 x (Pike Turbidity)2 

90 0.548 0.539 
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4.5.3  Predictive Model Performance 

 Verification data (remaining 25% of the dataset) was used to evaluate model 

performance (Figures 28-36; Table 12-13).  There was a significant correlation between 

predicted Pike River E. coli concentrations and actual concentrations (n=25, R2=0.3274, p<0.05).  

For verification data, mixing events were more frequent at locations A3, A2, A1 and P1 

compared to the remaining locations.  Additionally, exceedances of E. coli standards were most 

frequent at A3, A2 and P1 compared to the remaining sample locations.  Estimated Pike River E. 

coli contributions (actual Pike River E. coli concentration multiplied by mixing ratio) were 

compared to coastal E. coli concentrations for this subset of data. R2 values were 0.4084, 

0.4465, 0.6314, 0.1035, 0.3625, 0.2184 and 0.3126 at locations A3, A2, A1, P1, P2, P3 and P4 

respectively.  This indicates that the Pike River explained a greater amount of variation in 

coastal E. coli concentration at Alford Park sampling locations compared to Pennoyer Park for 

the training set data. Using the entire data set, mixing occurred more frequently at Pennoyer 

Park than Alford Park (see section 4.3.1).   
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Figure 28.  Ensemble and traditional VB MLR location specific models compared to actual 
verification set E. coli data at location A3 (n=25).  Data in upper right quadrant, upper left 
quadrant, lower left quadrant and lower right quadrant represent accurate predictions of 
exceedances, Type II errors, accurate predictions of non-exceedances and Type I errors, 
respectively.   
 

 
Figure 29.  Ensemble and traditional VB MLR location specific models compared to actual 
verification set E. coli data at location A2 (n=25).  Data in upper right quadrant, upper left 
quadrant, lower left quadrant and lower right quadrant represent accurate predictions of 
exceedances, Type II errors, accurate predictions of non-exceedances and Type I errors, 
respectively.   
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Figure 30.  Ensemble and traditional VB MLR location specific models compared to actual 
verification set E. coli data at location A1 (n=25).  Data in upper right quadrant, upper left 
quadrant, lower left quadrant and lower right quadrant represent accurate predictions of 
exceedances, Type II errors, accurate predictions of non-exceedances and Type I errors, 
respectively.   

 
Figure 31.  Ensemble and traditional VB MLR location specific models compared to actual 
verification set E. coli data at location P1 (n=25).  Data in upper right quadrant, upper left 
quadrant, lower left quadrant and lower right quadrant represent accurate predictions of 
exceedances, Type II errors, accurate predictions of non-exceedances and Type I errors, 
respectively.   
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Figure 32.  Ensemble and traditional VB MLR location specific models compared to actual 
verification set E. coli data at location P2 (n=25).  Data in upper right quadrant, upper left 
quadrant, lower left quadrant and lower right quadrant represent accurate predictions of 
exceedances, Type II errors, accurate predictions of non-exceedances and Type I errors, 
respectively.   

 
Figure 33.  Ensemble and traditional VB MLR location specific models compared to actual 
verification set E. coli data at location P3 (n=25).  Data in upper right quadrant, upper left 
quadrant, lower left quadrant and lower right quadrant represent accurate predictions of 
exceedances, Type II errors, accurate predictions of non-exceedances and Type I errors, 
respectively.   
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Figure 34.  Ensemble and traditional VB MLR location specific models compared to actual 
verification set E. coli data at location P4 (n=25).  Data in upper right quadrant, upper left 
quadrant, lower left quadrant and lower right quadrant represent accurate predictions of 
exceedances, Type II errors, accurate predictions of non-exceedances and Type I errors, 
respectively.   

 
Figure 35.  Ensemble and traditional VB MLR composite models compared to actual 
verification set E. coli data at location A1-A3 (n=75).  Data in upper right quadrant, upper left 
quadrant, lower left quadrant and lower right quadrant represent accurate predictions of 
exceedances, Type II errors, accurate predictions of non-exceedances and Type I errors, 
respectively.   
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Figure 36.  Ensemble and traditional VB MLR composite models compared to actual 
verification set E. coli data at location P2-P4 (n=75).  Data in upper right quadrant, upper left 
quadrant, lower left quadrant and lower right quadrant represent accurate predictions of 
exceedances, Type II errors, accurate predictions of non-exceedances and Type I errors, 
respectively.   
  

0

1

2

3

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Lo
g 

 A
ct

u
al

 E
. c

o
li 

(M
P

N
/1

0
0

m
l)

Log Estimated E. coli MPN/100ml

P2-P4 Ensemble Model P2-P4 Traditional VB Model 1:1 BAV

Type I Errors

Type II Errors



www.manaraa.com

65 
 

Table 12.  Summary data of model performance for location specific models using verification 

data set.  Bolded values indicate which model type had the more optimal performance for the 

selected statistic (values equal between model types not bolded).  Mixing events defined as 

dates with mixing ratio ≥ 0.01. 

 
Performance and comparison between traditional VB MLR and Ensemble location specific 

predictive models 

Traditional VB Predictive Models 

Location A3 A2 A1 P1 P2 P3 P4 Overall 

n 25 25 25 25 25 25 25 175 

R2 0.268 0.347 0.390 0.286 0.466 0.399 0.466 0.350 

RMSE 0.640 0.600 0.568 0.621 0.549 0.623 0.599 0.601 

E. coli Exceedances 7 5 3 5 3 4 4 31 

Sensitivity 0.143 0.400 0.000 0.000 0.333 0.250 0.250 0.194 

Specificity 1.000 1.000 1.000 0.900 0.909 1.000 1.000 0.972 

Mixing Events (n)  15 13 16 12 9 6 8 79 

Ensemble Predictive Models 

Location A3 A2 A1 P1 P2 P3 P4 Overall 

n 25 25 25 25 25 25 25 175 

R2 0.234 0.374 0.609 0.597 0.475 0.180 0.478 0.368 

RMSE 0.681 0.592 0.481 0.475 0.595 0.736 0.666 0.611 

E. coli Exceedances 7 5 3 5 3 4 4 31 

Sensitivity 0.429 0.400 0.667 0.600 0.667 0.250 0.000 0.419 

Specificity 1.000 0.950 0.909 0.900 0.909 0.952 0.952 0.938 

Mixing Events (n)  15 13 16 12 9 6 8 79 
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Table 13.  Summary data of model performance for composite models using verification data 

set.  Bolded values indicate which model type had the more optimal performance for the 

selected statistic (values equal between model types not bolded). 

Performance and comparison between composite traditional VB MLR and Ensemble 
predictive models 

Traditional VB Predictive Models 

Location A1-A3 P2-P4 Overall 

n 75 75 150 

R2 0.024 0.273 0.143 

RMSE 0.731 0.708 1.018 

E. coli Exceedances 15 11 26 

Sensitivity 0.000 0.000 0.000 

Specificity 1.000 0.984 0.992 

Mixing Events (n) (Mixing Ratio ≥ 0.01) 44 23 67 

Ensemble Predictive Models 

Location A1-A3 P2-P4 Overall 

n 75 75 150 

R2 0.295 0.096 0.155 

RMSE 0.602 0.833 1.027 

E. coli Exceedances 15 11 26 

Sensitivity 0.467 0.182 0.324 

Specificity 0.950 0.906 0.928 

Mixing Events (n) (Mixing Ratio ≥ 0.01) 44 23 67 

 R2 and RMSE values between modeled and actual log normalized E. coli concentrations 

for traditional VB MLR models using verification set data ranged from 0.268 to 0.466 and 0.549 

to 0.640 at Alford and Pennoyer Parks respectively.  R2 and RMSE values between modeled and 

observed log normalized E. coli concentrations for ensemble models using verification data 

ranged from 0.180 to 0.609 and 0.475 to 0.736 at Alford and Pennoyer Parks respectively.  

Sensitivity ranged from 0.00 to 0.400 and specificity ranged from 0.900 to 1.00 for traditional 

VB MLR models.  Sensitivity ranged from 0.00 to 0.667 and specificity ranged from 0.909 to 1.00 

for ensemble models.   
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4.5.4  Comparison of Ensemble and Traditional VB MLR Models 

 Ensemble location specific models had higher R2 values between modeled and actual E. 

coli concentrations than traditional location specific VB MLR models at five out of seven 

locations (A2, A1, P1, P2 and P4) and Overall (0.368 vs 0.350).  Ensemble models also had a 

higher or equal sensitivity to traditional VB MLR models at six locations (A3, A2, A1, P1, P2 and 

P3) and overall (0.419 vs. 0.194). 

 Traditional VB MLR location specific models had a lower RMSE between actual and 

modeled E. coli concentrations than ensemble location specific models at four locations (A3, P2, 

P3 and P4) and overall (0.601 vs. 0.611).  Traditional VB MLR locations specific models also had 

greater or equal specificity compared to ensemble locations specific models at all locations and 

overall (0.972 vs. 0.938). 

 Overall, composite models had lower R2 values, higher RMSE, lower sensitivity, and 

similar sensitivity compared to location specific models.  For example, traditional composite 

models for locations A1-A3 and ensemble composite models for locations P2-P4 had R2 values 

of less than 0.1.  Additionally, traditional ensemble models had sensitivity equal to zero.   

Similar to location specific models, composite ensemble models had higher R2 values, RMSE and 

sensitivity than traditional models; traditional models had lower specificity. 

 Difference between model performances are examined on two verification set dates, 

7/19/2015 and 5/30/2013 (Figures 37 and 38).  On both dates, ensemble models (locations 

specific and composite models) were able to estimate E. coli concentrations exceeding BAV at 

locations A1-A3 by modeling E. coli contributions from the Pike River. Traditional VB models did 
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not consistently indicate exceedances on these dates.  However, neither modeling technique 

reliably predicted exceedances of BAVs at Pennoyer Park sampling locations on 7/19/2015.   

Additionally, the ensemble based modeling technique falsely predicted an exceedance at 

location A2 (location specific and composite) and P3 (Composite model only) on 5/30/2013. 

 

Figure 37.  Comparison between actual E. coli concentrations and model predictions on 
7/19/2015.  Yellow line represents E. coli BAV.  Ensemble models are show as the sum of the 
river estimated contribution (W x  CPR) and non-point contribution ([1-W] x CPC).   
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Figure 38.  Comparison between actual E. coli concentrations and model predictions on 
5/30/2015.  Yellow line represents E. coli BAV.  Ensemble models are show as the sum of the 
river estimated contribution (W x  CPR) and non-point contribution ([1-W] x CPC).   

 

 In general, the difference in model performance between traditional VB MLR and 

ensemble models measured by R2 values and RMSE were small, i.e. models had similar 

performance.  The main differences in performance between location specific ensemble and 

traditional VB models were related to sensitivity and specificity.  Ensemble models had a higher 

sensitivity, but lower specificity.   
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4.5.5  Model Residuals 

 Model residuals (actual E. coli concentrations minus modeled values) were compared to 

estimated E. coli contributions from the Pike River (actual E. coli concentration of the river 

multiplied by mixing ratio) at each sampling location using the verification data set.  There were 

statistically significant positive correlations between location specific traditional VB MLR model 

residuals and estimated E. coli contributions from the Pike River at locations A3, A2 and A1 

(Spearman’s Rank correlation, p<0.05).  There were no statistically significant correlations 

between model residuals and estimated Pike River E. coli contributions for location specific 

ensemble models (p>0.05).  There were no correlations between model residuals and 

estimated Pike River E. coli concentrations for Pennoyer Park composite models (p>0.05); 

however, there were positive correlations between model residuals for both ensemble and 

traditional VB composite models (p<0.05).  Positive correlations between traditional VB MLR 

model residuals and estimated E. coli contributions from the Pike River indicates traditional VB 

MLR models failed to account for Pike River E. coli contributions.  The performance of 

traditional VB MLR models could be improved by incorporating contributions from the Pike 

River.   

4.5.6  Traditional VB MLR Models with Contributions From the Pike River 

 Mixing ratios and modeled Pike River E. coli concentrations were incorporated into 

traditional VB MLR models using equation 4 and compared to the verification data set (Table 

14-15).  Traditional VB models incorporating modeled Pike River E. coli concentrations had 

improved R2 values and lower RMSE for six out of seven location specific models (All locations 
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except P3) compared to traditional VB MLR models.  Similarly, composite models had improved 

performance measured by R2, RMSE and sensitivity by incorporating modeled Pike River E. coli 

concentrations.  Overall, traditional VB models incorporating contributions from the Pike River 

had high R2 values (location specific: 0.395 vs. 0.350; composite 0.297 vs. 0.143) and lower 

RMSE (location specific: 0.575 vs. 0.601; composite: 1.027 vs. 0.630).  Additionally, all models 

had higher or equal sensitivities.  However, specificity was decreased for five out of seven 

location specific models (A2, A1, P2, P3 and P4).  In comparison to ensemble models, location 

specific models which incorporated river mixing had higher overall R2 values between modeled 

and actual E. coli concentrations (0.395 vs. 0.368)  and lower RMSE (0.575 vs. 0.611). 

Table 14.  Summary data for traditional VB location specific models performance 
incorporation modeled Pike River E. coli concentrations using verification data set.  Bolded 
values indicate where models out performed traditional VB models (values equal between 
models not bolded). 

Location Specific Traditional VB MLR model with modeled Pike River E. coli concentrations 

Location A3 A2 A1 P1 P2 P3 P4 Overall 

n 25 25 25 25 25 25 25 175 

R2 0.320 0.370 0.607 0.298 0.537 0.361 0.475 0.395 

RMSE 0.598 0.595 0.483 0.617 0.501 0.638 0.576 0.575 

Sensitivity 0.429 0.400 0.667 0.000 0.667 0.250 0.250 0.355 

Specificity 1.000 0.900 0.909 0.900 0.864 0.952 0.952 0.924 

Table 15.  Summary data for traditional VB composite model performance incorporation 
modeled Pike River E. coli concentrations using verification data set.  Bolded values indicate 
where models out performed traditional VB models (values equal between models not 
bolded). 

Composite Traditional VB MLR model with modeled Pike River E. coli concentrations 

Location A1-A3 P2-P4 Overall 

n 75 75 150 

R2 0.318 0.321 0.297 

RMSE 0.591 0.668 0.630 

Sensitivity 0.467 0.273 0.385 

Specificity 0.950 0.953 0.952 
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5.  Discussion 

 There are two disadvantages to the current use of FIB to gauge recreational water 

quality: 1) difficulties identifying sources of impairment and conveyance mechanisms resulting 

in exceedances of water quality standards and 2) the ability to gauge water quality on time 

scales that are protective of human health.  MST techniques have been developed to determine 

the host origin of FIB. However, the results may not be informative enough to identify the 

portal of entry if there are multiple conveyance methods which introduce the source of FIB.  

Near real time analytical techniques have been created. However, high costs and lack of 

technical expertise prohibit the implementation at many locations.  Therefore, statistical based 

modeling is often used to predict water quality in real time.  However, this technique fails to 

identify the mechanism responsible for elevated FIB.   

This study evaluated data elements found within BSS forms to determine their influence 

on the mixing of the Pike River to coastal waters.  Applying this information can make MST 

more discriminative and aid in the identification of conveyance mechanisms responsible for 

elevated FIB concentrations.  Further, it was investigated whether mixing between river and 

coastal locations was predictive of river FIB contributions to coastal locations and evaluated 

applications for predictive models. 

 Data confirmed that Pike River discharge generally had elevated E. coli concentrations 

and that when it was conveyed to adjacent beaches it served to deteriorate water quality. This 

was consistent with Koski and Kinzelman (2013). The river also had consistently higher specific 

conductivity levels than coastal locations, indicating that the mixing of the river into Lake 
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Michigan coastal waters would imprint elevated specific conductivity levels (which were used to 

quantify mixing ratios).  Similarly, other studies have noted elevated bulk tracer levels in rivers 

(total dissolved solids and conductivity) compared to coastal locations within the Great Lakes 

(Visocky, 1977; Harvey, 1995).  Therefore, techniques used in this study to quantify the mixing 

of the Pike River into coastal waters may be valid at other locations. 

5.1  Accuracy and Precision of Mixing Ratio Calculations 

 Mixing calculations assume constant specific conductivity levels across the study area on 

each date except for changes caused by river mixing.  However, specific conductivity values 

were higher near the mouth of the river on days when discharge was blocked by a sandbar.  

The elevated levels near the mouth are likely related to the river becoming a losing stream as it 

enters the sandy areas near the beach.  This results in a greater horizontal gradient to the water 

table in the areas near the river, increasing groundwater exfiltration to the lake.  As 

groundwater has a higher specific conductivity values than the lake, the increased groundwater 

exfiltration results in elevated coastal levels in the vicinity of the Pike River.  Similarly, 

stormwater outfalls and/or infiltration basins located at Alford and Pennoyer Park may cause 

disturbances to the groundwater table and induce non-uniform exfiltration when flowing, i.e. 

following precipitation events.  Localized (non-uniform) groundwater exfiltration increases 

specific conductivity levels at coastal locations, which calculations treat as river mixing, 

therefore, creating accuracy errors.  

 Mixing calculations also assume a large difference in tracer levels/concentrations 

between the source and receiving body.  In this study it was found that the specific conductivity 

level of the river decreased following precipitation events.  Trends of decreasing specific 
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conductivity levels in rivers following precipitation have been noted in other Great Lakes 

studies (Haack et al, 2003).  Because of this phenomenon, the ability to make precise 

measurements was decreased following precipitation due to the lesser difference in source and 

background specific conductivity levels.  This was somewhat troublesome as Pike River E. coli 

concentration increases with discharge volume i.e. following precipitation events.  During this 

study, the maximum observed E. coli concentration in the river was 24,192 MPN/100 ml. Under 

these conditions, a mixing ratio of less than one percent, the lower bounds of quantification, 

would result in coastal E. coli concentrations above the BAV.  Therefore, the ability to measure 

mixing ratios is decreased at times when precise measurements are required.  

 Precision and accuracy errors may be reduced by measuring multiple tracers, as 

recommended by Schemel et al (2006), or using tracers that are unique to the source being 

evaluated and are less likely to be found within groundwater. 

5.2  Factors Influencing the Direction and Magnitude of Mixing 

 The analysis of mixing ratio data determined factors associated with the blending of 

river discharge into coastal water.  These factors included spatial variation, longshore current 

direction, wind direction and volume of river discharge.  Collectively, these variables are 

currently captured through the BSS process at many beaches.  Therefore, data is widely 

available and is currently being used.  While studies have concluded environmental factors can 

affect the distribution of fecal contamination from point sources, none are known to directly 

quantify the degree of mixing of the source into recreational surface waters (Nevers et al, 

2007).   
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5.2.1  Spatial Variability 

 In this study it was found that the frequency and magnitude of mixing was greater at 

sampling locations to the south of the Pike River compared to the north.  Factors that explain 

the directionally of river mixing were not predictive of this result (i.e. longshore current and 

wind direction). Other factors, not examined within this study, may also explain the 

directionality of river coastal water mixing favoring southern directions.  The Coriolis Effect, 

which is most pronounced in large scale systems, induces a clockwise rotation to river plumes in 

the northern hemisphere (Garvine, 1995; Mestres et al, 2007). This would result in more 

frequent mixing to the south of the Pike River.  However, the Coriolis Effect tends to be small, 

but not insignificant, for systems of the size studied and plume dynamics are often controlled 

by prevailing winds (Mestres et al, 2007).   

In addition to the Coriolis Effect, local coastal infrastructure may influence the dominant 

direction of mixing.  A jetty supports the mouth of the Kenosha Harbor 2.2 km to the south of 

the Piker River.  This jetty extends 200 meters into the lake and may disrupt the strength of 

longshore currents directed to the north.  Demirbilek et al (2009) noted in lab experiments that 

jetties can turn the direction of the longshore current seaward by 90 degrees, therefore 

disturbing the longshore currents on opposite sides of a jetty.  The current study did not 

measure flow velocities in the field to verify this hypothesis.   

Additionally, there are no engineered structures supporting the mouth of the Pike River.  

This causes the angle at which the river discharges into the lake to vary rather than being 

strictly perpendicular.  It is possible that the river discharged at an angle directing the flow to 
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the south more frequently than to the north.  The southern angle of the discharge may be 

strong enough to allow momentum to overcome the net longshore current direction, causing 

mixing to occur more frequently to the south of the river.  Future field studies should evaluate 

coastal structures and determine their impact on the directionally and magnitude of point 

source mixing. 

 This study found the magnitude and frequency of mixing events decreased with 

increasing distance from the river’s mouth with two exceptions.  The frequency of mixing 

events was greater at locations 400 meters north and 650 meters south of the river than closer 

locations on their same respective sides (by proximity, south or north of the mouth).  

Stormwater outfalls and/or infiltration basins were located adjacent to these locations.  The 

stormwater outfalls and/or infiltration basins may have caused local groundwater mounding 

following precipitation events, resulting in non-uniform groundwater exfiltration at these 

locations.  Therefore, the apparent increase in the frequency and magnitude of mixing at 

locations further from the river’s mouth is more likely due to errors in the calculation of the 

mixing ratio rather than being indicative of increased mixing further from the river.  Although 

mixing decreased with distance from the river, mixing ratios were high enough at all locations 

(distances within 650 meters of the river mouth) to result in exceedances of BAVs.   

5.2.2  Longshore Current and Wind Direction 

 This study evaluated two factors related to the direction of river coastal water mixing, 

longshore current and wind direction.  These factors are interrelated i.e. a consistent wind will 

cause the longshore current to flow in a similar direction.  In this study it was found that river 
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mixing at distances of 130 meters and more from the river’s mouth generally followed the 

dominant longshore current direction.  However, mixing was not influenced by in the same 

manner at sites in close proximity to the river’s mouth.  For this river/coastal system, locations 

in close proximity to the river’s mouth (20 meters) may representative the near field area 

where mixing is controlled by the characteristics of the of the source (e.g. geometry, discharge 

velocity, orientation), rather than being affected by the circulation properties of the lake 

(Morelissen et al, 2013).  The results of this study are in agreement with past research that 

examined longshore current directions at locations farther from the river’s mouth (≥130 

meters) (Ahn et al, 2005).   

 The dominant wind direction also had significant effects on river/coastal water mixing, 

e.g. higher mixing to the north of the river’s mouth with southerly winds and to the south of the 

river’s mouth with north winds.  Interestingly, the size of wind vectors favorable to mixing 

differed between locations (north and south of the river’s mouth).  There were more wind 

directions favorable to river mixing at locations to the south of the river.  This difference may 

be related to factors which are speculated to result in greater mixing at Pennoyer Park than 

Alford Park, e.g. Coriolis Effect, infrastructure to the south of the beach and the angle at which 

the river discharges into the lake.  This study is in agreement with others who noted the effects 

of wind on the directionality of plume movements on small scale systems (Mestres et al, 2007; 

Gaston et al, 2006).    

 Longshore current and wind directions, collected through BSS, is predictive of the 

directionality of point source mixing.  Thus, environmental factors determined at the time of 
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sample collection can be used to predict the interactions of a point source of FIB with coastal 

waters.  Using strength of evidence approach, this may inform or discredit a potential 

conveyance mechanism resulting in impaired water quality.  However, in close proximity to a 

point source, mixing may be controlled by the characteristics of the discharge (e.g. flow, 

geometry, etc.). These factors may not provide sufficient evidence to indicate a point source is 

impacting water quality. 

5.2.3  River Discharge 

 In this study it was found that higher discharge volumes increased the propensity for 

mixing to occur to the south of the river.  Smaller discharge volumes were associated with 

longshore currents that favored mixing to the north of the river, which may have limited the 

detection of significant trends at these locations.  This study is agreement with past studies that 

have noted discharge volumes affect the size of river plumes and increase the area impacted 

(Mestres et al, 2007; Garvine, 1995, Gaston et al, 2006).  It was also found that mixing increased 

to the south of the river’s mouth (20 meters) with unfavorable lake dynamics (northern 

longshore current) with large discharge volumes.  Large discharge volumes may promote 

bilateral pluming, causing areas to be impacted even with unfavorable longshore current 

directions (Mestres et al, 2007). 

 E. coli concentrations frequently exceed the BAV at beaches following precipitation 

events.  This is often attributed to surface runoff, containing elevated levels of FIB (Clary et al, 

2008).  This study indicated that high discharge volumes, following precipitation, increased the 

propensity for point sources of FIB to mix with coastal waters in addition to elevated E. coli 
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concentrations following precipitation.  Together, these factors (surface runoff and mixing) 

explain increases in water quality exceedances following precipitation events.   

5.3  End Member Mixing Models 

 Coastal outfalls and rivers often have large variance in E. coli concentrations (Clary et al, 

2009; Nevers et al, 2007).  In order for coastal locations to be effected by these sources, high 

concentrations of FIB must coincide with mixing.  This study evaluated whether the degree of 

mixing between the Pike River and Lake Michigan coastal waters, along with the E. coli 

concentrations of Pike River, could determine E. coli contributions to coastal waters using an 

end member mixing model.  E. coli contributions to coastal waters were estimated as the 

product of measured river E. coli concentrations and coastal mixing ratios.  The only other 

known study to employ this technique to estimate environmental E. coli concentrations was 

McLellan et al (2007).  However, McLellan et al (2007) measured open water E. coli 

concentrations to determine bacteria disappearance in sewage overflow plumes rather than 

using this technique as a source tracking tool to determine point source contributions to 

beaches.   

 This study found that a two component end member mixing model was able to 

accurately estimate coastal E. coli concentrations when the dominant source of E. coli was likely 

related to the river, but only at distances farther from the river’s mouth.  Models fit observed 

coastal E. coli concentrations at distances of 130 to 400 meters from the river’s mouth and 

regressions approximated a 1:1 slope indicating limited/no bacteria die off in transit.  End 

member models only included terms describing dilution, not bacteria die off.  Therefore, this 
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study indicated dilution is the dominant disappearance mechanism for E. coli in open coastal 

waters at sites distal from the river’s mouth.   

 Although model fit was lower at 400 m from the river’s mouth than at closer distances, 

it is unclear if this was due to the model being less effective at these distances or if errors 

associated with non-uniform groundwater exfiltration near the stormwater outfall/infiltration 

basin caused errors in the mixing calculation, lowering model fit.  Therefore, this study was 

unable to determine an exact distance from the Pike River where the end member models 

failedto predict coastal E. coli contributions.  However, other researchers have found the 

detection of bacteria is minimal at distances above five kilometers due to die-off and dilution 

(Ahn et al, 2005; McLellan et al, 2007).  Corrections may need to be applied to end member 

models to account for bacteria die off at locations farther from the river’s mouth than those 

examined in this study, i.e those proposed in Carvalho et al (2007).   

 At sites immediately adjacent to the river’s mouth (20 meters), end member mixing 

model fit observed coastal E. coli concentrations poorly.  The model generally over predicted 

observed E. coli concentrations as indicated by the slope of the regression between actual and 

predicted values. Prior to data analysis, it was expected that limited bacterial die off, in transit 

to this location, would yield the best fit.  The poor model fit is likely related to non-uniform 

groundwater exfiltration resulting in localized elevated specific conductivity levels near the 

mouth of the river (see section 5.1).  Mixing calculations treat these elevated specific 

conductivity values as river mixing, resulting in the over prediction of Pike River E. coli 

contributions.  River water recharging the groundwater system and later exfiltrating into 
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coastal waters near the mouth of the river was unlikely to contribute a significant amount of FIB 

as groundwater was found to generally have a low E. coli concentration at the study site and 

similar Lake Michigan locations (Skalbeck et al, 2010; Silva, 2013).  Future studies should 

evaluate the use of alternative tracers when evaluating locations near points of discharge (e.g. 

non unique sources of the tracer).   

 There are multiple applications associated with end member mixing model relevant to 

beach managers.  For example, we found the Pike River was responsible for between 12 and 15 

percent of exceedances of BAVs at Alford Park and between 26 and 42 percent at Pennoyer 

Park depending upon location.  Additionally, Pike River E. coli contributions to coastal waters 

explained more of the variance of E. coli concentrations at locations to the south of the river 

(Pennoyer Park) than the north (Alford Park).  E. coli variability and exceedances of BAVs not 

explained by the river maybe caused by non-point sources such as contribution from 

sediments, algae, or wildlife (Whitman et al, 2003; Byappanahalli et al, 2007; Englebert et al, 

2008; Byappanahalli et al, 2009; Alm et al, 2003; Kinzelman et al, 2004; Beversdorf et al, 2007; 

Skinner et al, 2010).  Determining the influence of point sources of FIB on beach water quality 

can help to determine outstanding sources of water quality impairment through a subtractive 

approach (Kinzelman et al, 2009).  By quantifying the impact of a point source of bacterial 

contamination on coastal water quality, restoration projects will have the greatest benefit 

relative to cost. They can be also be prioritized and objective estimates of the value of 

restoration can be determined.   
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5.4  Predictive Models 

 Commonly used bacteria enumeration methods require 18-24 hours to provide results.  

The time delay between sample collection and the availability and results may expose the 

public to unsafe swimming conditions.  Therefore, there is a need to identify water quality at 

beaches in real-time.  Models are one cost effective solution to provide water quality 

information in near real-time.  Programs such as Virtual Beach provide a low cost and accessible 

means for regression based model development.  However, regression based models generated 

using these programs may be criticized for their failure to identify mechanistic means for 

elevated bacteria concentrations.  Even with these failures, it has been shown the current use 

of the persistence model (water quality status based upon previous day’s results) fails to 

adequately protect public health due to most water quality impairments lasting only one day 

(Leecaster and Weisberg, 2001; Nevers and Whitman, 2011).  Regression based models are 

superior at identifying beach status in real-time in comparison to the persistence model at 

many locations (Francy et al, 2013). 

 In order for models to inform the public of water quality, models must be able to 

accurately predict exceedances and non-exceedances of bacteria standards; IE. models must 

have high sensitivity and specificity.  Francy et al (2013) defined good model performance as 

sensitivity of 0.50 and above and specificity of 0.85 and above.  However, in a study of 43 

beaches throughout the Great Lakes, only 17 out of 42 met the criteria for sensitivity; 

alternatively, 50% of models met the criteria for specificity (Francy et al, 2013).  Therefore, 

challenges in regression based predictive model development are to improve sensitivity and 

specificity.   
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 This study evaluated the performance of ensemble predictive models in comparison to 

traditional VB MLR models.  Ensemble models estimated coastal E. coli concentrations by 

linking predictive models for coastal E. coli concentrations in the absence of river mixing 

(presumably modeling non-point E. coli concentrations) and the Pike River.  This modeling 

approach elucidates river and coastal water interactions which provides a partial explanation 

for predicted E. coli concentrations.  Therefore, this approach provides real-time information on 

the conveyance mechanism resulting in exceedances of water quality standards.   

 Model variables and performance were consistent with past studies.  For example, 

Nevers et al (2007) found wave height, precipitation, turbidity, wind speed/directions, water 

temperature, specific conductance and river discharge to be significant factors for predicting E. 

coli concentrations at locations adjacent to a river mouth.  Model performance for the river was 

consistent with results from other studies who found river discharge to be a significant 

explanatory factor for bacteria concentrations (Brauewere et al 2014; David and Haggard, 

2011).  

 This study found that integrating modeled Pike River E. coli contributions into coastal 

models (traditional VB or ensemble; location specific models or composite models) improved 

performance.  Traditional VB models, incorporating modeled Pike River E. coli concentrations, 

had improved fit in comparison to traditional VB models for R2, RMSE, and sensitivity, but with 

lower sensitivity.  Ensemble models also had much higher sensitivity than traditional VB MLR 

models, but with lower specificity.  Higher sensitivity indicates this modeling approach is more 

protective of public health than traditional VB MLR models.  However, lower specificity will 
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have negative economic repercussions at areas which rely upon tourism due to more Type I 

errors (Rabinovici et al, 2004).  Additionally, location specific models had better model 

performance than composite models as measured by R2, RMSE, and sensitivity.   

 Traditional VB models were not able to account for Pike River E. coli contributions at 

locations to the north of the river, as evidenced by model residuals.  This may have been a 

function of the way the data was split between training and verification sets.  The verification 

set contained a higher fraction of mixing events compared to the training set at the northern 

sampling locations (Alford Park).  If traditional VB predictive models generally fail to account for 

the influence of point sources, improved modeling techniques are required, such as the 

ensemble approach used in this study.  Future research is needed on this subject.   
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6.  Conclusions 

 This study sought to identify conditions favorable to the mixing of the Pike River into 

Lake Michigan coastal waters, identify the associated impact of the river on coastal E. coli 

concentrations and use this information to more accurately gauge water quality in real-time 

through predictive models.  Environmental factors that appear on EPA’s Great Lake Beach 

Sanitary Surveys were explanatory for the directionality and magnitude of mixing between 

these two water bodies.  Adjacent beaches were impacted by river discharge based on 

prevailing winds and longshore current, however in some cases there was mixing close to the 

river mouth regardless of weather and hydrological factors.  Mixing ratios and Pike River E. coli 

concentrations were able to accurately predict the concentration of E. coli at coastal locations 

greater than 20m from the river’s mouth.  Models predictive of E. coli, which used mixing ratios 

as a mechanistic link to join coastal and river models, achieved greater sensitivity in comparison 

to traditional VB MLR models.  Quantifying mixing of river effluent into coastal waters validates 

their influence as a point source of pollution and improves the ability to accurately predict 

recreational water quality in real time.  Evaluating the degree of mixing between coastal waters 

and point sources of bacterial contamination therefore has the potential to improve public 

health protection by providing information resulting in better beach management. 
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Appendix A:  Correlations Between E. coli and Specific Conductivity 

 

Correlation between specific conductivity (μS) and E. coli (MPN/100 ml) at location A3 (n=100).  

See section 4.4.2 for correlation between estimated river E. coli contributions to coastal waters 

and actual coastal E. coli concentrations.   

 

Correlation between specific conductivity (μS) and E. coli (MPN/100 ml) at location A2 (n=100).  

See section 4.4.2 for correlation between estimated river E. coli contributions to coastal waters 

and actual coastal E. coli concentrations.   

ρ=0.244
p=0.0145

R² = 0.0705

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

250 270 290 310 330 350 370 390 410 430 450

Lo
g 

E.
 c

o
li 

M
P

N
/1

0
0

m
l

Specific Conductivity (µS)

ρ=0.197
p=0.0495

R² = 0.0345

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

250 300 350 400 450 500 550

Lo
g 

E.
 c

o
li 

M
P

N
/1

0
0

m
l

Specific Conductivity (µS)

A3 

A2 



www.manaraa.com

93 
 

 

Correlation between specific conductivity (μS) and E. coli (MPN/100 ml) at location A1 (n=100).  

See section 4.4.2 for correlation between estimated river E. coli contributions to coastal waters 

and actual coastal E. coli concentrations.  

 

Correlation between specific conductivity (μS) and E. coli (MPN/100 ml) at location P1 (n=98).  

See section 4.4.2 for correlation between estimated river E. coli contributions to coastal waters 

and actual coastal E. coli concentrations.   
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Correlation between specific conductivity (μS) and E. coli (MPN/100 ml) at location P2 (n=100).  

See section 4.4.2 for correlation between estimated river E. coli contributions to coastal waters 

and actual coastal E. coli concentrations.   

 

Correlation between specific conductivity (μS) and E. coli (MPN/100 ml) at location P3 (n=100).  

See section 4.4.2 for correlation between estimated river E. coli contributions to coastal waters 

and actual coastal E. coli concentrations.   
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Correlation between specific conductivity (μS) and E. coli (MPN/100 ml) at location P4 (n=100).  

See section 4.4.2 for correlation between estimated river E. coli contributions to coastal waters 

and actual coastal E. coli concentrations.   
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APPENDIX B:  Predictive Model Visualizations and Statistics 

 

Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for training set data at location A3 

(n=75).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. Note: ensemble models are compared to all training set data, not 

only the subset of training data used for the model build.   

 

Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for verification set data at location A3 

(n=25).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. 
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Actual E. coli concentrations (training set data, n=75) compared to traditional Virtual Beach and 

ensemble model results at location A3. See section 4.5.3 for comparisons between verification 

set. Note: ensemble models are compared to all training set data, not only the subset of 

training data used for the model build.   

 

Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location A3 for verification set data (n=25).  

Model residuals defined as actual E. coli concentration minus modeled concentrations.  
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Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location A3 for training set data (n=75).  

Model residuals defined as actual E. coli concentration minus modeled concentrations. Note: 

ensemble models are compared to all training set data, not only the subset of training data 

used for the model build.   

Location A3 
Ensemble Model Traditional VB Model 

Training Verification Training Verification 

n 75 25 75 25 

Average E. coli (MPN/100 ml) 1.516 1.647 1.592 1.551 

Standard Deviation 0.492 0.609 0.373 0.332 

Average Residual 0.076 0.072 0.000 0.168 

Type I  Errors (n) 2 0 1 0 

Type II Errors (n) 6 4 8 6 

Pearson's r 0.519 0.483 0.569 0.518 

R2 0.270 0.234 0.324 0.268 

RMSE 0.582 0.681 0.536 0.640 

Specificity 0.970 1.000 0.985 1.000 

Sensitivity 0.250 0.429 0.028 0.100 

Model statistics at location A3.  Note: ensemble models are compared to all training set data, 

not only the subset of training data used for the model build.   
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Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for training set data at location A2 

(n=75).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. Note: ensemble models are compared to all training set data, not 

only the subset of training data used for the model build.   

 

Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for verification set data at location A2 

(n=25).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. 
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Actual E. coli concentrations (training set data, n=75) compared to traditional Virtual Beach and 

ensemble model results at location A2.  See section 4.5.3 for comparisons between verification 

set. 

 

Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location A2 for verification set data (n=25).  

Model residuals defined as actual E. coli concentration minus modeled concentrations. 
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Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location A2 for training set data (n=75).  

Model residuals defined as actual E. coli concentration minus modeled concentrations. Note: 

ensemble models are compared to all training set data, not only the subset of training data 

used for the model build.   

Location A2 
A2 Ensemble Model Traditional VB Model 

Training Verification Training Verification 

n 75 25 75 25 

Average E. coli (MPN/100 ml) 1.751 1.824 1.726 1.734 

Standard Deviation 0.407 0.472 0.343 0.328 

Average Residual -0.025 -0.137 0.000 -0.047 

Type I  Errors (n) 3 1 1 0 

Type II Errors (n) 9 3 9 3 

Pearson's r 0.513 0.611 0.502 0.589 

R2 0.263 0.374 0.252 0.347 

RMSE 0.585 0.592 0.586 0.600 

Specificity 0.953 0.950 0.984 1.000 

Sensitivity 0.182 0.400 0.250 0.286 

Model statistics at location A2.  Note: ensemble models are compared to all training set data, 

not only the subset of training data used for the model build.   
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Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for training set data at location A1 

(n=75).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. Note: ensemble models are compared to all training set data, not 

only the subset of training data used for the model build.   

 

Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for verification set data at location A1 

(n=25).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. 
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Actual E. coli concentrations (training set data, n=75) compared to traditional Virtual Beach and 

ensemble model results at location A1.  See section 4.5.3 for comparisons between verification 

set. Note: ensemble models are compared to all training set data, not only the subset of 

training data used for the model build.   

 

Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location A1 for verification set data (n=25).  

Model residuals defined as actual E. coli concentration minus modeled concentrations. 
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Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location A1 for training set data (n=75).  

Model residuals defined as actual E. coli concentration minus modeled concentrations. Note: 

ensemble models are compared to all training set data, not only the subset of training data 

used for the model build.   

Location A1 
Ensemble Model Traditional VB Model 

Training Verification Training Verification 

n 75 25 75 25 

Average E. coli (MPN/100 
ml) 1.340 1.502 1.725 1.706 

Standard Deviation 0.606 0.647 0.320 0.220 

Average Residual 0.385 0.204 0.000 0.000 

Type I  Errors (n) 4 2 4 0 

Type II Errors (n) 13 1 14 3 

Pearson's r 0.436 0.781 0.403 0.624 

R2 0.190 0.609 0.162 0.390 

RMSE 0.847 0.481 0.721 0.568 

Specificity 0.934 0.909 0.934 1.000 

Sensitivity 0.071 0.667 0.091 0.000 

Model statistics at location A1.  Note: ensemble models are compared to all training set data, 

not only the subset of training data used for the model build.   
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Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for training set data at location P1 

(n=73).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. Note: ensemble models are compared to all training set data, not 

only the subset of training data used for the model build.   

 

Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for verification set data at location P1 

(n=25).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. 
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Actual E. coli concentrations (training set data, n=73) compared to traditional Virtual Beach and 

ensemble model results at location P1. See section 4.5.3 for comparisons between verification 

set. Note: ensemble models are compared to all training set data, not only the subset of 

training data used for the model build.   

 

Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location P1 for verification set data (n=25).  

Model residuals defined as actual E. coli concentration minus modeled concentrations. 
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Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location P1 for training set data (n=73).  

Model residuals defined as actual E. coli concentration minus modeled concentrations. Note: 

ensemble models are compared to all training set data, not only the subset of training data 

used for the model build.   

Location P1 
Ensemble Model Traditional VB Model 

Training Verification Training Verification 

n 73 25 73 25 

Average E. coli (MPN/100 
ml) 2.027 1.794 1.823 1.641 

Standard Deviation 0.687 0.644 0.566 0.429 

Average Residual -0.199 -0.083 0.000 0.070 

Type I  Errors (n) 12 2 3 2 

Type II Errors (n) 6 2 11 5 

Pearson's r 0.692 0.772 0.707 0.535 

R2 0.479 0.597 0.500 0.286 

RMSE 0.614 0.475 0.554 0.621 

Specificity 0.782 0.900 0.945 0.900 

Sensitivity 0.667 0.600 0.071 0.000 

Model statistics at location P1.  Note: ensemble models are compared to all training set data, 

not only the subset of training data used for the model build.   
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Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for training set data at location P2 

(n=75).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. Note: ensemble models are compared to all training set data, not 

only the subset of training data used for the model build.   

  

Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for verification set data at location P2 

(n=25).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. 
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Actual E. coli concentrations (training set data, n=75) compared to traditional Virtual Beach and 

ensemble model results at location P2. See section 4.5.3 for comparisons between verification 

set. Note: ensemble models are compared to all training set data, not only the subset of 

training data used for the model build.   

Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location P2 for verification set data (n=25).  

Model residuals defined as actual E. coli concentration minus modeled concentrations.  
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Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location P2 for training set data (n=75).  

Model residuals defined as actual E. coli concentration minus modeled concentrations. Note: 

ensemble models are compared to all training set data, not only the subset of training data 

used for the model build.   

Location P2 
Ensemble Model Traditional VB Model 

Training Verification Training Verification 

n 75 25 75 25 

Average E. coli (MPN/100 
ml) 1.869 1.516 1.868 1.629 

Standard Deviation 0.714 0.657 0.711 0.546 

Average Residual 0.001 0.233 0.001 0.120 

Type I  Errors (n) 3 2 6 2 

Type II Errors (n) 9 1 8 2 

Pearson's r 0.768 0.689 0.751 0.682 

R2 0.590 0.475 0.564 0.466 

RMSE 0.600 0.595 0.619 0.549 

Specificity 0.942 0.909 0.885 0.909 

Sensitivity 0.609 0.667 0.556 0.200 

Model statistics at location P2.  Note: ensemble models are compared to all training set data, 

not only the subset of training data used for the model build.   
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Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for training set data at location P3 

(n=75).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. Note: ensemble models are compared to all training set data, not 

only the subset of training data used for the model build.   

 

Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for verification set data at location P3 

(n=25).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. 
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Actual E. coli concentrations (training set data, n=75) compared to traditional Virtual Beach and 

ensemble model results at location P3. See section 4.5.3 for comparisons between verification 

set. Note: ensemble models are compared to all training set data, not only the subset of 

training data used for the model build.   

 

Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location P3 for verification set data (n=25).  

Model residuals defined as actual E. coli concentration minus modeled concentrations.  
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Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location P3 for training set data (n=75).  

Model residuals defined as actual E. coli concentration minus modeled concentrations. Note: 

ensemble models are compared to all training set data, not only the subset of training data 

used for the model build.   

Location P3 
Ensemble Model Traditional VB Model 

Training Verification Training Verification 

n 75 25 75 25 

Average E. coli (MPN/100 
ml) 1.984 1.725 1.917 1.667 

Standard Deviation 0.618 0.494 0.659 0.488 

Average Residual -0.067 0.022 0.000 0.081 

Type I  Errors (n) 5 1 3 0 

Type II Errors (n) 9 3 9 3 

Pearson's r 0.698 0.424 0.707 0.631 

R2 0.488 0.180 0.499 0.399 

RMSE 0.667 0.736 0.655 0.623 

Specificity 0.896 0.952 0.938 1.000 

Sensitivity 0.667 0.250 0.696 0.333 

Model statistics at location P3.  Note: ensemble models are compared to all training set data, 

not only the subset of training data used for the model build.   
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Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for training set data at location P4 

(n=75).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. Note: ensemble models are compared to all training set data, not 

only the subset of training data used for the model build.   

 

Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for verification set data at location P4 

(n=25).  Yellow line represents beach action value.  A, B, and C represents data from years 2012, 

2013 and 2014, respectively. 
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Actual E. coli concentrations (training set data, n=75) compared to traditional Virtual Beach and 

ensemble model results at location P4. See section 4.5.3 for comparisons between verification 

set.  Note: ensemble models are compared to all training set data, not only the subset of 

training data used for the model build.   

 

Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location P4 for verification set data (n=25).  

Model residuals defined as actual E. coli concentration minus modeled concentrations.  
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Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) at location P4 for training set data (n=75).  

Model residuals defined as actual E. coli concentration minus modeled concentrations. Note: 

ensemble models are compared to all training set data, not only the subset of training data 

used for the model build.   

Location P4 

Ensemble Model Traditional VB Model 

Training Verification Training Verification 

n 75 25 75 25 

Average E. coli (MPN/100 
ml) 1.718 1.395 1.856 1.557 

Standard Deviation 0.631 0.521 0.719 0.522 

Average Residual 0.138 0.364 0.000 0.203 

Type I  Errors (n) 3 1 3 0 

Type II Errors (n) 18 4 7 3 

Pearson's r 0.782 0.691 0.787 0.682 

R2 0.611 0.478 0.620 0.466 

RMSE 0.588 0.666 0.559 0.599 

Specificity 0.939 0.952 0.939 1.000 

Sensitivity 0.308 0.000 0.704 0.250 

Model statistics at location P4.  Note: ensemble models are compared to all training set data, 

not only the subset of training data used for the model build.   
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Comparison between actual E. coli concentrations (red) (MPN/100ml) and traditional Virtual 

Beach (blue) model results for training set data at the Pike River sample location (n=75).  Yellow 

line represents beach action value.  A, B, and C represents data from years 2012, 2013 and 

2014, respectively. 

 

Comparison between actual E. coli concentrations (red) (MPN/100ml) and traditional Virtual 

Beach (blue) model results for verification set data at Pike River sample location (n=25).  Yellow 

line represents beach action value.  A, B, and C represents data from years 2012, 2013 and 

2014, respectively. 
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Histograms of actual E. coli concentrations (red) and traditional Virtual Beach model residuals 

(blue) for the Pike River for training set data (n=75).  Model residuals defined as actual E. coli 

concentration minus modeled concentrations. 

 

Histograms of actual E. coli concentrations (red) and traditional Virtual Beach model residuals 

(blue) for the Pike River for verification set data (n=25).  Model residuals defined as actual E. 

coli concentration minus modeled concentrations. 
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Pike River Model Training Verification 

n 75 25 

Average E. coli (MPN/100 ml) 2.552 2.435 

Standard Deviation 0.553 0.549 

Average Residual 0.000 -0.070 

Type I  Errors (n) 12 4 

Type II Errors (n) 3 4 

Pearson's r 0.633 0.572 

R2 0.401 0.327 

RMSE 0.672 0.579 

Specificity 0.692 0.733 

Sensitivity 0.917 0.600 

Model statistics for the Pike River.  
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Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results (black) 

and traditional Virtual Beach (blue) model results for training set data using the composite model at 

locations A3 (top), A2 (middle) and A1 (bottom).  Yellow line represents beach action value.  A, B, and C 

represents data from years 2012, 2013 and 2014, respectively. Note: ensemble models are compared to 

all training set data, not only the subset of training data used for the model build.   
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Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for verification set data using the 

composite model at locations A3 (top), A2 (middle) and A1 (bottom).  Yellow line represents 

beach action value.  A, B, and C represents data from years 2012, 2013 and 2014, respectively.  
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Actual E. coli concentrations (training set data, n=225) compared to traditional Virtual Beach 

and ensemble model results for composite A1-A3 model. See section 4.5.3 for comparisons 

between verification set.  Note: ensemble models are compared to all training set data, not 

only the subset of training data used for the model build.   

 

Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) for A1-A3 combined model for verification set 

data (n=75).  Model residuals defined as actual E. coli concentration minus modeled 

concentrations. 
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Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) for A1-A3 combined model for training set data 

(n=225).  Model residuals defined as actual E. coli concentration minus modeled 

concentrations. Note: ensemble models are compared to all training set data, not only the 

subset of training data used for the model build.   

Location A3-A1 Composite 

Ensemble Model Traditional VB Model 

Training Verification Training Verification 

n 225 75 225 75 

Average E. coli (MPN/100 ml) 1.807 1.747 1.732 1.544 

Standard Deviation 0.493 0.471 0.441 0.251 

Average Residual -0.061 -0.043 0.000 0.160 

Type I  Errors (n) 13 3 5 0 

Type II Errors (n) 25 8 25 15 

Pearson's r 0.579 0.544 0.582 0.155 

R2 0.335 0.295 0.339 0.024 

RMSE 0.585 0.602 0.578 0.731 

Specificity 0.932 0.950 0.974 1.000 

Sensitivity 0.242 0.467 0.242 0.000 

Summary statistics for A1-A3 composite model.  Note: ensemble models are compared to all 

training set data, not only the subset of training data used for the model build.   
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Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results (black) 

and traditional Virtual Beach (blue) model results for training set data using the composite model at 

locations P2 (top), P3 (middle) and P4 (bottom).  Yellow line represents beach action value.  A, B, and C 

represents data from years 2012, 2013 and 2014, respectively. Note: ensemble models are compared to 

all training set data, not only the subset of training data used for the model build.  
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Comparison between actual E. coli concentrations (red) (MPN/100ml), ensemble model results 

(black) and traditional Virtual Beach (blue) model results for verification set data using the 

composite model at locations P2 (top), P3 (middle) and P4 (bottom).  Yellow line represents 

beach action value.  A, B, and C represents data from years 2012, 2013 and 2014, respectively.  
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Actual E. coli concentrations (training set data, n=225) compared to traditional Virtual Beach 

and ensemble model results for composite P2-P4 model. See section 4.5.3 for comparisons 

between verification set.  Note: ensemble models are compared to all training set data, not 

only the subset of training data used for the model build.   

 

Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) for P2-P4 combined model for verification set 
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data (n=75).  Model residuals defined as actual E. coli concentration minus modeled 

concentrations. 

 

Histograms of actual E. coli concentrations (red), ensemble model residuals (black) and 

traditional Virtual Beach model residuals (blue) for P2-P4 combined model for training set data 

(n=75).  Model residuals defined as actual E. coli concentration minus modeled concentrations.  

Note:  six outliers (not shown) were associated with ensemble model and had residuals of 

approximately -4 (n=3) and -13 (n=3). Note: ensemble models are compared to all training set 

data, not only the subset of training data used for the model build.   

Location P2-P4 Composite 

Ensemble Model Traditional VB Model 

Training Verification Training Verification 

n 225 75 225 75 

Average E. coli (MPN/100 
ml) 2.178 1.514 1.881 1.493 

Standard Deviation 2.032 0.566 0.727 0.484 

Average Residual -0.297 0.238 0.000 0.259 

Type I  Errors (n) 12 6 10 1 

Type II Errors (n) 31 9 21 11 

Pearson's r 0.474 0.310 0.785 0.522 

R2 0.225 0.096 0.616 0.273 

RMSE 1.810 0.833 0.572 0.708 

Specificity 0.919 0.906 0.933 0.984 

Sensitivity 0.592 0.182 0.724 0.000 

Summary statistics for P2-P4 composite model.  Note: ensemble models are compared to all 

training set data, not only the subset of training data used for the model build.  
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